A Review of the Methods for Modification of Hydrophilic Properties of Starch Based Biopolymers as a Biodegradable Food Packaging Material

Document Type : Original Article

Authors

1 MSc student. Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Assistant Professor. Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

Abstract

Today, an important part of the materials used in the food packaging industry is oil derivatives. This has caused much environmental pollution in the world. One of the proposed solutions to tackle this problem is the use of edible and biodegradable films as a good alternative to non-degradable polymers. Starch is being studied for its ability to form film, availability, renewability and low cost as a bio-polymer, but disadvantages such as high hydrophilic properties and poor mechanical properties limit the industrial use of this highly valued material. The presence of hydroxyl groups in the starch chains creates a hydrogen bond between the polysaccharide and water. Also, there is a lot of free space in the starch chains, so that molecules of water can easily pass through this space. Today, many researches has been done to reduce hydrophilic properties of starch using genetically modification, enzymatic, chemical (esterification, acetylation, phosphorylation) the use of nanoparticles in the polymer matrix, starch composition with lipids, and other biopolymers. Most of the methods are based on inhibition of starch hydroxyl groups in various ways.  One of the methods for inhibiting the starch hydrophilic groups is the esterification of starch chains with hydrophobic agents, the formation of emulsions by fatty acids, and the filling of pores in the polysaccharide network by nanoparticles.

Keywords


1. یوسفی، ع و همکاران. (1395)، «برخی خصوصیات فیزیکوشیمیایی و رئولوژیکی نشاستههای فسفریله و هیدروکسی پروپیله گندم»، فصلنامه علوم و صنایع غذایی، شماره 58، دوره 13، 160 – 145.
2. گودرزی و. شهابی قهفرخی، ا. (1395)، «تولید فیلم نشاسته با استفاده از واکنشهای نوری: بررسی ویژگیهای فیزیکی و شیمیایی»، نشریه پژوهش‌های صنایع غذایی، جلد 26، شماره 3.
3. آقا بابائی، ع. کسائی، م. (1392)، «مطالعه خواص مختلف لایههای نازک تشکیلشده از نشاسته واکسی ذرّت – اسیدسیتریک و نشاسته- متیل سلولز برای پوشش». نشریه پژوهش‌های علوم و صنایع غذایی ایران، جلد 9، شماره 1، 80-68.
4. اولیائی، ا و همکاران. (1396)، «اثر مونت موریلونیت (MMT) بر مشخصههای ساختاری، نوری و حرارتی فیلمهای نانوبیوکامپوزیتی نشاسته سیبزمینی تولیدشده در ایران»، فصلنامه فنّاوری‌های نوین غذایی، سال 4، شماره 15.
5. قنبرزاده، ب و همکاران.(1392)، «مطالعه      ریختشناسی و خواص بازدارندگی           نسبت به رطوبت فیلم بیونانوکامپوزیت                 زیستتخریبپذیر نشاسته –CMC– نانو رس»، مجلّه نوآوری در علوم و فنّاوری موادغذایی، سال پنجم، شماره 4.
6. غلامی، ر و همکاران.(1393)، «بررسی خواص فیزیکی نانوکامپوزیتهای بر پایه نشاسته سیبزمینی – نانوبلور سلولز (NCC) استخراجشده از پنبه»، مجلّه تحقیقات مهندسی کشاورزی، جلد 15، شماره 4، 38 – 27.
7. اولیائی، ا و همکاران. (1394)، «تولید و بررسی نانو ساختار و خواص فیزیکوشیمیایی فیلم زیست کامپوزیت نشاسته حاوی نانو ذرّات Tio2"»، فصلنامه فنّاوری‌های نوین غذایی، سال دوم، شماره 8، 101-87.
8. Fang, J. and Fowler, P. )2003(. “The use of starch and its derivatives as biopolymer sources of packaging materials.” Journal of Food Agriculture and Environment, 1: p. 82-84.
9. Park, S. Hettiarachchy, N. and Were, L. )2000(. “Degradation behavior of soy protein− wheat gluten films in simulated soil conditions.” Journal of agricultural and food chemistry, 48(7): p. 3027-3031.
10. van der Zee, M. )2005(. “Biodegradability of polymers: mechanisms and evaluation methods, in Handbook of biodegradable polymers.” Rapra Technology. p.
11. Averous, L. and Boquillon, N. )2004(. “Biocomposites based on plasticized starch: thermal and mechanical behaviours.” Carbohydrate Polymers, 56(2): p. 111-122.
12. Abbas, K. S.K. Khalil, and Hussin, A.S.M. )2010(. “Modified starches and their usages in selected food products: a review study.” Journal of Agricultural Science, 2(2): p. 90.
13. Carvalho, A.J. Starch: )2008(. “Major sources, properties and applications as thermoplastic materials.” Elsevier, Amsterdam.
14. Avérous, L. and Halley, P.J. )2009(. “Biocomposites based on plasticized starch.” Biofuels, bioproducts and biorefining, 3(3): p. 329-343.
15. Cunha, A.G. and Gandini, A. )2010(. “Turning polysaccharides in to hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates.” Cellulose, 17(6): p. 1045-1065.
16. Ghanbarzadeh, B. Almasi H. and Oleyaei S.A. )2014(. “A novel modified starch/carboxymethyl cellulose/montmorillonite bionanocomposite film: structural and physical properties.” International journal of food engineering, 10(1): p. 121-130.
17. Mali, S. et al. )2005(. “Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect.” Carbohydrate Polymers, 60(3): p. 283-289.
18.   Jagannath, J. et al. )2003(. “Mechanical and barrier properties of edible starch–proteinbased films.” Journal of applied polymer science, 88(1): p. 64-71.
19. Choi, S.G. and Kerr, W.L. )2003(. “Effects of chemical modification of wheat starch on molecular mobility as studied by pulsed 1 H NMR.” LWT-Food Science and Technology, 36(1): p. 105-112.
20.   Shin, S.I. et al. )2009(. “Structural characteristics of low-glycemic response rice starch produced by citric acid treatment.” Carbohydrate polymers, 78(3): p. 588-595.
21. Yin, Y. et al. )2005(. “Starch crosslinked with poly (vinyl alcohol) by boric acid.” Journal of Applied Polymer Science, 96(4): p. 1394-1397.
22. Seker, M. and Hanna M.A. )2006(. “Sodium hydroxide and trimetaphosphate levels affect properties of starch extrudates.” Industrial Crops and Products, 23(3): p. 249-255.
23.   Shi, R. et al. )2007(. “Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending.” Carbohydrate Polymers, 69(4): p. 748-755.
24. Almasi, H. GHANBARZADEH, B. and PEZESHKI, N.A. (2009). “Improving the physical properties of starch and starch–carboxymethyl cellulose composite biodegradable films.”
25. Zhou, J. et al. (2016). “Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid.” International journal of biological macromolecules, 91: p. 1186-1193.
26. Chi, H. et al. (2008). “Effect of acetylation on the properties of corn starch.” Food Chemistry, 106(3): p. 923-928.
27. Diop, C.I.K. et al. (2011). “Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates.” Food chemistry, 126(4): p. 1662-1669.
28. Zhou, J. et al. (2009). “Effect of surface esterification with octenyl succinic anhydride on hydrophilicity of corn starch films.” Journal of applied polymer science, 114(2): p. 940-947.
29. Koo, S.H. Lee K.Y. and Lee H.G. (2010). “Effect of cross-linking on the physicochemical and physiological properties of corn starch.” Food Hydrocolloids, 24(6): p. 619-625.
30. Slavutsky, A.M. and Bertuzzi, M.A. (2015). “Formulation and characterization of nanolaminated starch based film.” LWT-Food Science and Technology, 61(2): p. 407-413.
31. Ojagh, S.M. et al. (2010). “Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water.” Food Chemistry, 122(1): p. 161-166.
32. Shojaee-Aliabadi, S. et al. (2013). “Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil.” International journal of biological macromolecules, 52: p. 116-124.
33. Goudarzi, V. Shahabi-Ghahfarrokhi,I. and Babaei-Ghazvini A. (2017). “Preparation of ecofriendly UV-protective food packaging material by starch/TiO 2 bio-nanocomposite: Characterization.” International journal of biological macromolecules, 95: p. 306-313.
34. Shahabi-Ghahfarrokhi, I. et al. (2015). “Effect of γ-irradiation on the physical and mechanical properties of kefiran biopolymer film.” International journal of biological macromolecules, 74: p. 343-350.
35. Kim, J.K. et al. (2008). “Effect of gamma irradiation on the physicochemical properties of a starch-based film.” Food Hydrocolloids, 22(2): p. 248-254.
36. Soliman, E. and Furuta M. (2009). “Influence of γ-irradiation on mechanical and water barrier properties of corn protein-based films.” Radiation Physics and Chemistry, 78(7): p. 651-654.
37. Ma, X. P. Chang, R. and Yu, J. (2008). “Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulosecomposites.” Carbohydrate Polymers, 72(3): p. 369-375.
38. Li, X.M. Reinhoudt,D. and Crego-Calama M. (2007). “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces.” Chemical Society Reviews, 36(8): p. 1350-1368.
39. Ghanbarzadeh, B. Oleyaei, S.A. and Almasi, H. (2015). “Nanostructured materials utilized in biopolymer-based plastics for food packaging applications.” Critical reviews in food science and nutrition, 55(12): p. 1699-1723...
40. Li, Y. et al. (2011). “Fabrication and characterization of TiO 2/whey protein isolate nanocomposite film.” Food Hydrocolloids, 25(5): p. 1098-1104.
41. Zhou, J. S. Wang, and Gunasekaran, S. (2009). “Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles.” Journal of food science. 74(7).