Investigation of Physical, Mechanical and Morphological Properties of Chitosan Film Prepared with Different Levels, Molecular Weights and Solvents

Document Type : Original Article

Authors

1 Department of Agriculture, Islamic Azad University, Savadkooh, Iran

2 Dep. of Agriculture, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran

3 Department of Agriculture, Savadkooh Branch, Islamic Azad University, Savadkooh, IRAN

Abstract

Using of chitosan biopolymer has been developed in the form of edible film and coating as a packaging material for food products. The physical and mechanical properties of chitosan film are influenced by various factors. To investigate the impact of effective factors on the film-forming solution, the present experiment in a completely randomized design using the 23 factorial method, a total of 8 treatments including the level (2 and 4%), molecular weight (high and low) of chitosan and solvent type (acetic acid and citric acid) used in film preparation was carried out. The physical and mechanical parameters of the films were measured. Also, the microstructure of the films was investigated using scanning electron microscope (SEM) images and infrared spectroscopy (FTIR) spectra. The results showed that 4% high and low molecular weights chitosan films which were dissolved in the acetic acid had the highest tensile strength (0.16 ± 0.01 MPa), Young's modulus (2.45 ± 0.55 MPa) and impermeability (2.17 ± 0.09 ± 0.09 g/msPa), and the highest elongation at break (54.33% ± 0.95%) was observed in 4% high molecular weight chitosan film with citric acid solvent (p<0.05). In addition, high molecular weight chitosan film dissolved in acetic acid was more transparent compared to citric acid (p<0.05). SEM images and IR spectra analysis confirmed the obtained results. Therefore, the physical and mechanical performance of the chitosan film was affected by the level and molecular weight of chitosan, and especially the type of acidic solvent, as well as the interaction effects of these factors. In general, the use of a higher level and molecular weight of chitosan leads to the production of a better film, and acetic acid is a more suitable solvent than citric acid.

Keywords

Main Subjects


Smiley face

[1] O. Catarina, C.A. Ferreira, N. I. Delgadillo, & J. A. Lopes-da-Silva, “Characterization of chitosan–whey protein films at acid pH. Food Res. Int.,” vol. 42, pp.    807-813, 2009. doi:10.1016/j.foodres.2009.03.005.
[2] E. S. Abdou, K. S. A. Nagy, & M.Z. Elsabee, “Extraction and characterization of chitin and chitosan from local sources,” Bioresour. Technol., vol. 99 (5), pp. 1359-1367, 2008. doi:10.1016/j.biortech.2007.01.051.
[3] M. Z. Elsabee, & E. S. Abdou, “Chitosan based edible films and coatings: A review,” Mater. Sci. Eng. C., vol, 33 (4), pp. 1819-1841, 2013. doi:10.1016/j.msec.2013.01.010.
[4] J. P. Quiñones, H. Peniche, C. Peniche, “Chitosan based self-assembled nanoparticles in drug delivery,” Polymers (Basel), vol. 10 (3), p. 235, 2018. doi:10.3390/polym10030235.
[5] Y. Zhong, C. Zhuang, W. Gu, &Y. Zhao, “Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique,” Carbohydr. Polym., vol. 212, pp. 197-205, 2019. doi:10.1016/j.carbpol.2019.02.048.
[6] W. Zhang, J. Cao, & W. Jiang, “Analysis of            film-forming properties of chitosan with different molecular weights and its adhesion properties with different postharvest fruit surfaces”, Food Chem., vol. 395, p. 133605, 2022. doi:10.1016/j.foodchem.2022.133605.
[7] Y. Liu, Y. Yuan, S. Duan, C. Li, B. Hu, A. Liu, D. Wu, H. Cui, L. Lin, J. He, & W. Wu, “Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging”, Int. J. Biol. Macromol., vol. 155, pp. 249-259, 2020. doi:10.1016/j.ijbiomac.2020.03.217.
[8] S. Hikmet Mutasher, & H. Salman Al-Lami, “The effect of different molecular weight chitosan on the physical and mechanical properties of plasticized films” Eur. J. Chem., vol. 13 (4), pp. 460-467, 2022. doi:10.5155/eurjchem.13.4.460-467.2341.
[9] L.S. Soares, R.B. Perim, E.S. Alvarenga, L.M. Guimarães, A.V.N.C. Teixeira, J.S.R. Coimbra, & E.B. Oliveira, “Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid,” Int. J. Biol. Macromol., vol. 128, pp. 140-148, 2019. doi:10.1016/j.ijbiomac.2019.01.106.
[10] A. Chenni, H. Djidjelli, A. Boukerrou, Y. Grohens, & B. Saulnier, “Thermomechanical and acidic treatments to improve plasticization and properties of chitosan films: A comparative study of acid types and glycerol effects,” Mater. Test., vol. 60, pp. 93-101, 2018. doi:10.3139/120.111122.
[11] J. Khouri, A. Penlidis, & C. Moresoli, “Heterogeneous method of chitosan film preparation: Effect of multifunctional acid on film properties,” J. Appl. Polym. Sci., vol. 137, p. 48648, 2020. doi:10.1002/app.48648.
[12] C. Qiao, X. Ma, X. Wang, & L. Liu, “Structure and properties of chitosan films: Effect of the type of solvent acid,” LWT - Food Sci. Technol., vol. 135, p. 109984, 2021. doi:10.1016/j.lwt.2020.109984.
[13] O. Koga, N. Fujihara, & Y. Yoshimura, “Scanning electron micrograph of surface structures of soft-shelled eggs laid by regularly laying hens,” Poult. Sci., vol. 61, pp. 403-406, 1982. doi:10.3382/ps.0610403.
[14] ASTM International, “ASTM E96, Standard test methods for water-vapor transmission of materials; ASTM International,” West Conshohocken, PA, USA, 2016.
[15] ASTM International, “ASTM D5229/D5229M-14e1, Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials; ASTM International,” West Conshohocken, PA, USA, 2014.
[16] P. B. Pathare, U. L. Opara, F. A. J. Al-Said, “Color measurement and analysis in fresh and processed foods: a review,” Food Bioproc Tech., vol. 6, pp. 36-60, 2013. doi:10.1007/s11947-012-0867-9.
[17] ASTM International, “ASTM D882-18, Standard test method for tensile properties of thin plastic sheeting; ASTM International,” West Conshohocken, PA, USA, 2018.
[18] S. Y. Park, K. S. Marsh, & J. W. Rhim, “Characteristics of different molecular weight chitosan films affected by the type of organic solvents,” J. Food Sci., vol. 67(1), pp. 194- 197, 2002. doi:10.1111/j.1365-2621. 2002.tb11382. x.
[19] K. M. Kim, J. H. Son, S. K. Kim, C. L. Weller, & M. A. Hanna, “Properties of chitosan films as a function of pH and solvent type,” J. Food Sci., vol. 71(3), pp. E119- E124, 2006. doi:10.1111/j.1365-2621. 2006.tb15624. x.
[20] J.L. Chen, and Y. Zhao, “Effect of molecular weight, acid, and plasticizer on the physicochemical and antibacterial properties of β-chitosan based films,” J. Food Sci., vol. 77(5), pp. E127-E136, 2012. doi:10.1111/j.1750-3841.2012. 02686.x.
[21] A. P. Bizymis, V. Giannou, & C. Tzia, “Improved properties of composite edible films based on chitosan by using cellulose nanocrystals and beta-cyclodextrin,” Appl. Sci., 12: 8729, 2022. doi:10.3390/app12178729.
[22] I. Aranaz, A. R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A. Heras Caballero, & N. Acosta, “Chitosan: An overview of its properties and applications,” Polymers, vol. 13, p. 3256, 2021. doi:10.3390/polym13193256.
[23] A. Tawakaltu, E.C. Egwim, S.S. Ochigbo, & P.C. Ossai, “Effect of acetic acid and citric acid modification on biodegradability of cassava starch nanocomposite films,” J. mater. sci. eng., vol. 5(9-10), pp. 372-379, 2015. doi:10.17265/2161-6221/2015.9-10.005.
[24] J. Nunthanid, S. Puttipipatkhachorn, K. Yamamoto,   & G. E. Peck, “Physical properties and molecular behavior of chitosan films,” Drug Dev. Ind. Pharm., vol. 27(2), pp. 143-157, 2001. doi:10.1081/ddc-100000481.
[25] C. A. Kienzle-Sterzer, D. Rodriguez-Sanchez, & C. Rha, “Mechanical properties of chitosan films: effect of solvent acid,” Macromol. Chem. Phys., vol. 183, pp.   1353- 1359, 1982. doi:10.1002/macp.1982.021830528.
[26] A. Bégin, & M. R. Van Calsteren, “Antimicrobial films produced from chitosan,” Int. J. Biol. Macromol., vol. 26(1), pp. 63-67, 1999.                    doi:10.1016/S0141-8130(99)00064-1.
[27] S. N. Adila, N. E. Suyatma, A. S. Firlieyanti, & A. Bujang,“Antimicrobial and physical properties of chitosan film as affected by solvent types and glycerol as plasticizer,” Advanced Material Research, vol. 748, pp. 155-159, 2013. doi:10.4028/www.scientific.net/AMR.748.155.
[28] N. Sharmin, J. T. Rosnes, L. Prabhu, U. Böcker, & M. Sivertsvik, “Effect of citric acid cross linking on the mechanical, rheological and barrier properties of chitosan,” Molecules, vol. 27, p. 5118, 2022. doi:10.3390/molecules27165118.
[29] M. Fallah Delavar, & N. Sedaghat, “A review of functional and antimicrobial properties of chitosan in food preservation,” Scientific Journal of Packaging Science and Art, vol. 11(41), pp. 16-25, 2021. (In Persian)
[30] N. Kumar, Pratibha., A. Trajkovska Petkoska, E. Khojah, R. Sami, & A.A.M. Al-Mushhin, “Chitosan edible films enhanced with pomegranate peel extract: study on physical, biological, thermal, and barrier properties,” Materials, vol. 14, p. 3305, 2021. doi:10.3390/ma14123305.
[31] S. Tripathi, G.K. Mehrotra, & P.K. Dutta,“ Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications,” Int. J. Biol. Macromol., vol. 45, pp. 372-376, 2009. doi:10.1016/j.ijbiomac.2009.07.006.
[32] E. Y. Wardhono, M. P. Pinem, S. Susilo, B. J. Siom, A. Sudrajad, A. Pramono, Y. Meliana, & E. Guénin,“ Modification of physio-mechanical properties of chitosan-based films via physical treatment approach,” Polymers, vol. 14, p. 5216, 2022. doi:10.3390/polym14235216.
[33] E. Melro, F. E. Antunes, G. L. da Silva, I. Cruz, P.E. Ramos, F. Carvalho, & L. Alves, “Chitosan films in food applications. Tuning film properties by changing acidic dissolution conditions,” Polymers, vol. 13, p. 1, 2021. doi:10.3390/polym13010001.
Volume 14, Issue 54 - Serial Number 54
Serial number 54, summer 2023
August 2023
Pages 9-19
  • Receive Date: 21 February 2023
  • Revise Date: 21 May 2023
  • Accept Date: 31 July 2023
  • Publish Date: 13 August 2023