A Review on the Application of Modified Atmosphere Packaging Integrated with Other Technologies for White and Red Meat Packaging

Document Type : Overview

Authors

Ferdowsi University of Mashhad

Abstract

White and red meats are suspectible to spoilage and quality degradation because of microbial spoilage, lipid oxidation, and other degrading factors. Modified atmosphere packaging (MAP) can increase the shelf life of white and red meats by replacing the air inside the package with a gas or gas mixture suitable for the product. The gas mixtures typically include nitrogen, carbon dioxide, and oxygen, depending on the meat type. However, MAP with high levels of oxygen causes lipid oxidation and the growth of aerobic microorganisms, which can lead to undesired changes in the meat. MAP with low oxygen levels, on the other hand, alters the meat color and activity of anaerobic microorganisms. Even though MAP with carbon dioxide prevents the growth of microorganisms, the possibility of bacterial growth, specifically spore-producing types, still exists in long-term storage. Therefore, combining MAP with other technologies like oxygen scavengers, carbon dioxide emitters, antimicrobial compounds, edible coatings with antimicrobial properties, or novel technologies such as irradiation, pulsed electric field, high hydrostatic pressure, cold plasma, and ultrasound can enhance its effectiveness. Intelligent systems can also be used to ensure the safety and quality of food products in MAP.

Keywords

Main Subjects


Smiley face

[1]   S. T. Joo, G. D. Kim, Y. H. Hwang, and Y. C. Ryu, “Control of fresh meat quality through manipulation of muscle fiber characteristics,” Meat Sci., vol. 95, no. 4, pp. 828–836, 2013, doi: https://doi.org/10.1016/j.meatsci.2013.04.044.
[2]   D. Narasimha Rao and N. M. Sachindra, “Modified atmosphere and vacuum packaging of meat and poultry products,” Food Rev. Int., vol. 18, no. 4, pp. 263–293, 2002, doi: 10.1081/FRI-120016206.
[3]   A. Vermeulen, P. Ragaert, A. Rajkovic, S. Samapundo, F. Lopez-Galvez, and F. Devlieghere, “New research on modified-atmosphere packaging and pathogen behaviour,” in Advances in microbial food safety, Elsevier, pp. 340–354, 2013, doi: https://doi.org/10.1533/9780857098740.4.340.
[4]   K. Cooksey, Modified Atmosphere Packaging of Meat, Poultry and Fish. Elsevier Ltd, 2013. doi: 10.1016/B978-0-12-394601-0.00019-9.
[5]   S. Limbo and A. M. Khaneghah, “Active packaging of foods and its combination with electron beam processing,” in Electron beam pasteurization and complementary food processing technologies, Elsevier, pp. 195–217, 2015, doi: 10.1533/9781782421085.2.195.
[6]   K. W. McMillin, “Advancements in meat packaging,” Meat Sci., vol. 132, no. April, pp. 153–162, 2017, doi: 10.1016/j.meatsci.2017.04.015.
[7]   J. P. Kerry, M. N. O’grady, and S. A. Hogan, “Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review,” Meat Sci., vol. 74, no. 1, pp. 113–130, 2006.
[8]   T. Hutton, Food packaging: An introduction. Campden & Chorleywood Food Research Association Group, 2003.
[9]   G. Kandeepan and A. Tahseen, “Modified Atmosphere Packaging (MAP) of Meat and Meat Products: A Review,” J. Packag. Technol. Res., vol. 6, no. 3, pp. 137–148, 2022, doi: 10.1007/s41783-022-00139-2.
[10] K. W. McMillin, “Where is MAP Going? A review and future potential of modified atmosphere packaging for meat,” Meat Sci., vol. 80, no. 1, pp. 43–65, 2008, doi: 10.1016/j.meatsci.2008.05.028.
[11] V. Behshad and N. Sedaghat, "Application of Modified Atmosphere Packaging of Poultry: a Review",  Scientific Journal of Packaging science and art, vol 11, no 42, pp 20-27, 2020, (in Persian), dor:20.1001.1.22286675.1399.11.42.2.3
[12] J. N. Belcher, “Industrial packaging developments for the global meat market,” Meat Sci., vol. 74, no. 1, pp. 143–148, 2006, doi: 10.1016/j.meatsci.2006.04.031.
[13] D. Cornforth and M. Hunt, “Low-oxygen packaging of fresh meat with carbon monoxide,” AMSA white Pap. Ser., vol. 2, no. 10, pp. 1–12, 2008.
[14] R. J. Delmore, “Beef shelf-life,” Cattlemen’s Beef Board Natl. Cattlemen’s Beef Assoc., 2009.
[15] P. Masniyom, “Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging.,” Songklanakarin J. Sci. Technol., vol. 33, no. 2, 2011.
[16] G. L. Robertson, Food packaging and shelf life: a practical guide. CRC Press, 2009.
[17] M. Mastromatteo, A. Danza, A. Conte, G. Muratore, and M. A. Del Nobile, “Shelf life of ready to use peeled shrimps as affected by thymol essential oil and modified atmosphere packaging,” Int. J. Food Microbiol., vol. 144, no. 2, pp. 250–256, 2010, doi: 10.1016/j.ijfoodmicro.2010.10.002.
[18] K. Brandon, M. Beggan, P. Allen, and F. Butler, “The performance of several oxygen scavengers in varying oxygen environments at refrigerated temperatures: implications for low‐oxygen modified atmosphere packaging of meat,” Int. J. food Sci. Technol., vol. 44, no. 1, pp. 188–196, 2009. doi: 10.1111/j.1365-2621.2008.01727.x
[19] M. C. Cruz-Romero, T. Murphy, M. Morris, E. Cummins, and J. P. Kerry, “Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications,” Food Control, vol. 34, no. 2, pp. 393–397, 2013, doi: 10.1016/j.foodcont.2013.04.042.
[20] D. A. Pereira de Abreu, J. M. Cruz, and P. Paseiro Losada, “Active and intelligent packaging for the food industry,” Food Rev. Int., vol. 28, no. 2, pp. 146–187, 2012, doi: https://doi.org/10.1080/87559129.2011.595022.
[21] C. O. Gill and J. C. McGinnis, “The use of oxygen scavengers to prevent the transient discolouration of ground beef packaged under controlled, oxygen-depleted atmospheres,” Meat Sci., vol. 41, no. 1, pp. 19–27, 1995, doi:10.1016/0309-1740(94)00064-E.
[22] B. Demirhan and K. Candoǧan, “Active packaging of chicken meats with modified atmosphere including oxygen scavengers,” Poult. Sci., vol. 96, no. 5, pp. 1394–1401, May 2017, doi: 10.3382/ps/pew373.
[23] A. Şahin, E. Çarkcıoğlu, B. Demirhan, and K. Candoğan, “Chitosan edible coating and oxygen scavenger effects on modified atmosphere packaged sliced sucuk,” J. Food Process. Preserv., vol. 41, no. 6, pp. 1–8, 2017, doi: 10.1111/jfpp.13213.
[24] T. Tsironi et al., “Modeling the effect of active modified atmosphere packaging on the microbial stability and shelf life of gutted sea bass,” Appl. Sci., vol. 9, no. 23, p. 5019, 2019, doi: 10.3390/app9235019.
[25] A. Å. Hansen, M. Høy, and M. K. Pettersen, “Prediction of optimal CO 2 emitter capacity developed for modified atmosphere packaging of fresh salmon fillets ( Salmo salar L.),” Packag. Technol. Sci., vol. 22, no. 4, pp. 199–208, Jun. 2009, doi: 10.1002/pts.843.
[26] A. Å. Hansen, B. Moen, M. Rødbotten, I. Berget, and M. K. Pettersen, “Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO2 emitter on quality parameters of cod loins (Gadus morhua),” Food Packag. Shelf Life, vol. 9, pp. 29–37, 2016, doi: 10.1016/j.fpsl.2016.05.005.
[27] A. Å. Hansen, T. Mørkøre, K. Rudi, E. Olsen, and T. Eie, “Quality Changes during Refrigerated Storage of MA-Packaged Pre-rigor Fillets of Farmed Atlantic Cod (Gadus morhua L.) Using Traditional MAP, CO 2 Emitter, and Vacuum,” J. Food Sci., vol. 72, no. 9, pp. M423–M430, Nov. 2007, doi: 10.1111/j.1750-3841.2007.00561.x.
[28] A. L. Holck, M. K. Pettersen, M. H. Moen, and O. Sørheim, “Prolonged shelf life and reduced drip loss of chicken filets by the use of carbon dioxide emitters and modified atmosphere packaging,” J. Food Prot., vol. 77, no. 7, pp. 1133–1141, 2014, doi: 10.4315/0362-028X.JFP-13-428.
[29] A. Å. Hansen, B. Moen, M. Rødbotten, I. Berget, and M. K. Pettersen, “Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO2 emitter on quality parameters of cod loins (Gadus morhua),” Food Packag. Shelf Life, vol. 9, pp. 29–37, 2016, doi: 10.1016/j.fpsl.2016.05.005.
[30] M. Valero, S. Leontidis, P. S. Fernández, A. Martı́nez, and M. C. Salmerón, “Growth of Bacillus cereus in natural and acidified carrot substrates over the temperature range 5–30 C,” Food Microbiol., vol. 17, no. 6, pp. 605–612, 2000, doi: 10.1006/fmic.2000.0352.
[31] M. Lindström, K. Kiviniemi, and H. Korkeala, “Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing,” Int. J. Food Microbiol., vol. 108, no. 1, pp. 92–104, Apr. 2006, doi: 10.1016/j.ijfoodmicro.2005.11.003.
[32] M. Oliveira, J. Usall, C. Solsona, I. Alegre, I. Viñas, and M. Abadias, “Effects of packaging type and storage temperature on the growth of foodborne pathogens on shredded ‘Romaine’ lettuce,” Food Microbiol., vol. 27, no. 3, pp. 375–380, May 2010, doi: 10.1016/j.fm.2009.11.014.
[33] J. S. Novak and J. T. C. Yuan, “The fate of Clostridium perfringens spores exposed to ozone and/or mild heat pretreatment on beef surfaces followed by modified atmosphere packaging,” Food Microbiol., vol. 21, no. 6, pp. 667–673, doi:10.1016/j.fm.2004.03.003
[34] P. Suppakul, J. Miltz, K. Sonneveld, and S. W. Bigger, “Active packaging technologies with an emphasis on antimicrobial packaging and its applications,” J. Food Sci., vol. 68, no. 2, pp. 408–420, 2003, doi:10.1111/j.1365-2621.2003.tb05687.x
[35] I. S. Arvanitoyannis and A. C. Stratakos, “Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: a review,” Food Bioprocess Technol., vol. 5, pp. 1423–1446, 2012, doi: 10.1007/s11947-012-0803-z.
[36] T. Economou, N. Pournis, A. Ntzimani, and I. N. Savvaidis, “Nisin-EDTA treatments and modified atmosphere packaging to increase fresh chicken meat shelf-life,” Food Chem., vol. 114, no. 4, pp. 1470–1476, 2009, doi: 10.1016/j.foodchem.2008.11.036.
[37] E. González-Fandos, A. Martínez-Laorden, and I. Perez-Arnedo, “Efficacy of combinations of lactic acid and potassium sorbate against Listeria monocytogenes in chicken stored under modified atmospheres,” Food Microbiol., vol. 93, no. July 2020, 2021, doi: 10.1016/j.fm.2020.103596.
[38] L. I. Schelegueda, S. B. Delcarlo, M. F. Gliemmo, and C. A. Campos, “Effect of antimicrobial mixtures and modified atmosphere packaging on the quality of Argentine hake (Merluccius hubbsi) burgers,” Lwt, vol. 68, pp. 258–264, 2016, doi: 10.1016/j.lwt.2015.12.012.
[39] M. İ. Aksu, E. Erdemir, F. Oz, E. Turan, and M. Gürses, “Effects of cemen paste with lyophilized red cabbage water extract on the quality characteristics of beef pastırma during processing and storage,” J. Food Process. Preserv., vol. 44, no. 11, p. e14897, Nov. 2020, doi: 10.1111/jfpp.14897.
[40] R. Prommachart, T. S. Belem, S. Uriyapongson, P. Rayas-Duarte, J. Uriyapongson, and R. Ramanathan, “The effect of black rice water extract on surface color, lipid oxidation, microbial growth, and antioxidant activity of beef patties during chilled storage,” Meat Sci., vol. 164, p. 108091, Jun. 2020, doi: 10.1016/j.meatsci.2020.108091.
[41] L. Udayasoorian, M. Peter, S. K, I. C, and S. Muthusamy, “Comparative evaluation on shelf life extension of MAP packed Litopenaeus vannamei shrimp treated with natural extracts,” Lwt, vol. 77, pp. 217–224, 2017, doi: 10.1016/j.lwt.2016.11.046.
[42] M. H. Jaspal et al., “Effect of oregano essential oil or lactic acid treatments combined with air and modified atmosphere packaging on the quality and storage properties of chicken breast meat,” Lwt, vol. 146, no. July 2020, p. 111459, 2021, doi: 10.1016/j.lwt.2021.111459.
[43] Y. F. Qian, J. Xie, S. P. Yang, S. Huang, W. H. Wu, and L. Li, “Inhibitory effect of a quercetin-based soaking formulation andmodified atmospheric packaging (MAP) on muscle degradation ofPacific white shrimp (Litopenaeus vannamei),” Lwt, vol. 63, no. 2, pp. 1339–1346, 2015, doi: 10.1016/j.lwt.2015.03.077.
[44] I. Karabagias, A. Badeka, and M. G. Kontominas, “Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging,” Meat Sci., vol. 88, no. 1, pp. 109–116, 2011, doi: 10.1016/j.meatsci.2010.12.010.
[45] T. Bourtoom, “Edible films and coatings: characteristics and properties,” Int. food Res. J., vol. 15, no. 3, pp. 237–248, 2008.
[46] E. S. Abdou, G. F. Galhoum, and E. N. Mohamed, “Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets,” Food Hydrocoll., vol. 83, pp. 445–453, Oct. 2018, doi: 10.1016/j.foodhyd.2018.05.026.
[47] A. Mojaddar Langroodi, H. Tajik, T. Mehdizadeh, M. Moradi, E. Moghaddas Kia, and A. Mahmoudian, “Effects of sumac extract dipping and chitosan coating enriched with Zataria multiflora Boiss oil on the shelf-life of meat in modified atmosphere packaging,” LWT, vol. 98, pp. 372–380, Dec. 2018, doi: 10.1016/j.lwt.2018.08.063.
[48] M. Sayadi, A. Mojaddar Langroodi, and D. Jafarpour, “Impact of zein coating impregnated with ginger extract and Pimpinella anisum essential oil on the shelf life of bovine meat packaged in modified atmosphere,” J. Food Meas. Charact., vol. 15, no. 6, pp. 5231–5244, 2021, doi: 10.1007/s11694-021-01096-1.
[49] M. Hosseini, A. Jamshidi, M. Raeisi, and M. Azizzadeh, “Effect of sodium alginate coating containing clove (Syzygium Aromaticum) and lemon verbena (Aloysia Citriodora) essential oils and different packaging treatments on shelf life extension of refrigerated chicken breast,” J. Food Process. Preserv., vol. 45, no. 3, pp. 0–1, 2021, doi: 10.1111/jfpp.14946.
[50] M. Sayadi, A. M. Langroodi, and K. Pourmohammadi, “Combined effects of chitosan coating incorporated with Berberis vulgaris extract and Mentha pulegium essential oil and MAP in the shelf life of turkey meat,” J. Food Meas. Charact., vol. 15, no. 6, pp. 5159–5169, 2021, doi: 10.1007/s11694-021-01068-5.
[51] M. Du, D. U. Ahn, K. C. Nam, and J. L. Sell, “Influence of dietary conjugated linoleic acid on volatile profiles, color and lipid oxidation of irradiated raw chicken meat,” Meat Sci., vol. 56, no. 4, pp. 387–395, 2000, doi: 10.1016/S0309-1740(00)00067-X.
[52] A. Karadağ and G. Güneş, “The effects of gamma irradiation on the quality of ready-to-cook meatballs,” Turkish J. Vet. Anim. Sci., vol. 32, no. 4, pp. 269–274, 2008.
[53] Y. Li et al., “Combining e-beam irradiation and modified atmosphere packaging as a preservation strategy to improve physicochemical and microbiological properties of sauced duck product,” Food Control, vol. 136, no. 169, p. 108889, 2022, doi: 10.1016/j.foodcont.2022.108889.
[54] B. L. Rodrigues et al., “Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout ( Oncorhynchus mykiss ) fillets,” Food Control, vol. 60, pp. 596–605, Feb. 2016, doi: 10.1016/j.foodcont.2015.09.004.
[55] O. O. Olatunde and S. Benjakul, “Nonthermal Processes for Shelf-Life Extension of Seafoods: A Revisit,” Compr. Rev. Food Sci. Food Saf., vol. 17, no. 4, pp. 892–904, Jul. 2018, doi: 10.1111/1541-4337.12354.
[56] J. Riener, F. Noci, D. A. Cronin, D. J. Morgan, and J. G. Lyng, “Effect of high intensity pulsed electric fields on enzymes and vitamins in bovine raw milk,” Int. J. Dairy Technol., vol. 62, no. 1, pp. 1–6, Feb. 2009, doi: 10.1111/j.1471-0307.2008.00435.x.
[57] K. A. Shiekh, W. N. Hozzein, and S. Benjakul, “Effect of pulsed electric field and modified atmospheric packaging on melanosis and quality of refrigerated Pacific white shrimp treated with leaf extract of Chamuang (Garcinia cowa Roxb.),” Food Packag. Shelf Life, vol. 25, no. July, p. 100544, 2020, doi: 10.1016/j.fpsl.2020.100544.
[58] H. Simonin, F. Duranton, and M. de Lamballerie, “New Insights into the High-Pressure Processing of Meat and Meat Products,” Compr. Rev. Food Sci. Food Saf., vol. 11, no. 3, pp. 285–306, May 2012, doi: 10.1111/j.1541-4337.2012.00184.x.
[59] M. Lerasle et al., “Combined use of modified atmosphere packaging and high pressure to extend the shelf-life of raw poultry sausage,” Innov. Food Sci. Emerg. Technol., vol. 23, pp. 54–60, 2014, doi: 10.1016/j.ifset.2014.02.009.
[60] A. Al-Nehlawi, S. Guri, B. Guamis, and J. Saldo, “Synergistic effect of carbon dioxide atmospheres and high hydrostatic pressure to reduce spoilage bacteria on poultry sausages,” LWT-Food Sci. Technol., vol. 58, no. 2, pp. 404–411, 2014, doi: 10.1016/j.lwt.2014.03.041.
[61] Y. Mao, S. Yang, Y. Zhang, X. Luo, L. Niu, and B. W. B. Holman, “High-pressure processing and modified atmosphere packaging combinations for the improvement of dark , firm , and dry beef quality and,” Meat Sci., vol. 198, no. September 2022, p. 109113, 2023, doi: 10.1016/j.meatsci.2023.109113.
[62] S. Fukuda, Y. Kawasaki, and S. Izawa, “Ferrous chloride and ferrous sulfate improve the fungicidal efficacy of cold atmospheric argon plasma on melanized Aureobasidium pullulans,” J. Biosci. Bioeng., vol. 128, no. 1, pp. 28–32, Jul. 2019, doi: 10.1016/j.jbiosc.2018.12.008.
[63] R. Moutiq, N. N. Misra, A. Mendonça, and K. Keener, “In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies,” Meat Sci., vol. 159, p. 107942, Jan. 2020, doi: 10.1016/j.meatsci.2019.107942.
[64] O. O. Olatunde, S. Benjakul, and K. Vongkamjan, “Dielectric Barrier Discharge High Voltage Cold Atmospheric Plasma: An Innovative Nonthermal Technology for Extending the Shelf‐Life of Asian Sea Bass Slices,” J. Food Sci., vol. 84, no. 7, pp. 1871–1880, Jul. 2019, doi: 10.1111/1750-3841.14669.
[65] O. O. Olatunde, S. Benjakul, and K. Vongkamjan, “High voltage cold atmospheric plasma: Antibacterial properties and its effect on quality of Asian sea bass slices,” Innov. Food Sci. Emerg. Technol., vol. 52, pp. 305–312, 2019, doi: https://doi.org/10.1016/j.ifset.2019.01.011.
[66] J. Sarfraz et al., “Biodegradable Active Packaging as an Alternative to Conventional Packaging: A Case Study with Chicken Fillets,” Foods, vol. 10, no. 5, p. 1126, May 2021, doi: 10.3390/foods10051126.
[67] K. H. Lee et al., “Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice,” LWT, vol. 73, pp. 442–447, Nov. 2016, doi: 10.1016/j.lwt.2016.06.055.
[68] O. O. Olatunde, S. Benjakul, and K. Vongkamjan, “Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging,” Int. J. Food Microbiol., vol. 324, no. November 2019, p. 108612, Jul. 2020, doi: 10.1016/j.ijfoodmicro.2020.108612.
[69] R. Li, H. Zhu, Y. Chen, G. Zhou, C. Li, and K. Ye, “Cold plasmas combined with Ar-based MAP for meatball products: Influence on microbiological shelflife and quality attributes,” Lwt, vol. 159, p. 113137, 2022, doi: 10.1016/j.lwt.2022.113137.
[70] I. S. Arvanitoyannis, K. V Kotsanopoulos, and A. G. Savva, “Use of ultrasounds in the food industry–Methods and effects on quality, safety, and organoleptic characteristics of foods: A review,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 1, pp. 109–128, Jan. 2017, doi: 10.1080/10408398.2013.860514.
[71] A. D. Alarcon-Rojo, L. M. Carrillo-Lopez, R. Reyes-Villagrana, M. Huerta-Jiménez, and I. A. Garcia-Galicia, “Ultrasound and meat quality: A review,” Ultrason. Sonochem., vol. 55, pp. 369–382, Jul. 2019, doi: 10.1016/j.ultsonch.2018.09.016.
[72] S. E. Bilek and F. Turantaş, “Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review,” Int. J. Food Microbiol., vol. 166, no. 1, pp. 155–162, Aug. 2013, doi: 10.1016/j.ijfoodmicro.2013.06.028.
[73] D. Kang, Y. Zou, Y. Cheng, L. Xing, G. Zhou, and W. Zhang, “Effects of power ultrasound on oxidation and structure of beef proteins during curing processing,” Ultrason. Sonochem., vol. 33, pp. 47–53, Nov. 2016, doi: 10.1016/j.ultsonch.2016.04.024.
[74] T. Mao et al., “The joint effects of ultrasound and modified atmosphere packaging on the storage of sauced ducks,” Lwt, vol. 177, no. February, p. 114561, 2023, doi: 10.1016/j.lwt.2023.114561.
[75] M. H. Abdalhai, M. Bashari, C. Lagnika, Q. He, and X. Sun, “Effect of Ultrasound Treatment Prior to Vacuum and Modified Atmosphere Packaging on Microbial and Physical Characteristics of Fresh Beef,” J. Food Nutr. Res., vol. 2, no. 6, pp. 312–320, Jun. 2014, doi: 10.12691/jfnr-2-6-8.
[76] M. Ozdemir and J. D. Floros, “Active food packaging technologies,” Crit. Rev. Food Sci. Nutr., vol. 44, no. 3, pp. 185–193, 2004, doi: 10.1080/10408690490441578.
[77] C. A. Kelly, M. Cruz-Romero, J. P. Kerry, and D. P. Papkovsky, “Assessment of performance of the industrial process of bulk vacuum packaging of raw meat with nondestructive optical oxygen sensing systems,” Sensors, vol. 18, no. 5, p. 1395, 2018. doi:10.3390/s18051395
[78] A. A. Tyuftin and J. P. Kerry, “The storage and preservation of meat: Storage and packaging,” in Lawrie’s Meat Science, Elsevier, 2023, pp. 315–362. doi: 10.1016/B978-0-323-85408-5.00017-0.
[79] C. Franke and J. Beauchamp, “Real-Time Detection of Volatiles Released During Meat Spoilage: a Case Study of Modified Atmosphere-Packaged Chicken Breast Fillets Inoculated with Br. thermosphacta,” Food Anal. Methods, vol. 10, no. 2, pp. 310–319, 2017, doi: 10.1007/s12161-016-0585-4.
[80] L. Huang, J. Zhao, Q. Chen, and Y. Zhang, “Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques,” Food Chem., vol. 145, pp. 228–236, Feb. 2014, doi: 10.1016/j.foodchem.2013.06.073.
[81] Y. Sun et al., “Non-destructive and Rapid Method for Monitoring Fish Freshness of Grass Carp Based on Printable Colorimetric Paper Sensor in Modified Atmosphere Packaging,” Food Anal. Methods, vol. 15, no. 3, pp. 792–802, 2022, doi: 10.1007/s12161-021-02158-2.
[82] P. Castro, J. C. P. Padrón, M. J. C. Cansino, E. S. Velázquez, and R. M. De Larriva, “Total volatile base nitrogen and its use to assess freshness in European sea bass stored in ice,” Food Control, vol. 17, no. 4, pp. 245–248, 2006. doi: 10.1016/j.foodcont.2004.10.015
[83] R. Bermudez, N. Mateus, A. Guedes, J. Manuel, V. De Freitas, and L. Cruz, “Food Hydrocolloids FoodSmarTag : An innovative dynamic labeling system based on pyranoflavylium-based colorimetric films for real-time monitoring of food freshness V ˆ,” vol. 143, no. February, 2023, doi: 10.1016/j.foodhyd.2023.108914.
Volume 14, Issue 56 - Serial Number 56
Serial number 56, winter 2023
March 2024
Pages 45-61
  • Receive Date: 13 August 2023
  • Revise Date: 08 September 2023
  • Accept Date: 14 October 2023
  • Publish Date: 20 February 2024