Biodegradable Films from Bacterial Cellulose: A Review

Document Type : Overview

Authors

1 Master's student, Department of Food Science and Engineering, Faculty of Agricultural Sciences, Gilan University, Iran

2 Assistant Professor, Department of Food Science and Technology, Agriculture Faculty, University of Guilan, Iran

Abstract

The escalating environmental challenges arising from the extensive utilization of plastic packaging have led to a growing interest in biocompatible polymers among researchers and producers in the food industry. Bacterial cellulose is a natural polysaccharide that is mainly produced by the Acetobacter species. Biodegradability, crystallinity and high purity, suitable physicochemical properties and also the good performance of this polymer as a matrix for the production of antimicrobial and antioxidant packaging have made this polysaccharide to be noticed. Cellulose films produced via the static culture technique may exhibit notable   efficacy in extending the shelf life of various products, particularly meat products, through treatment with diverse antimicrobial solutions along with polysaccharides like chitosan. The primary obstacle in bacterial cellulose production lies in the identification of an appropriate carbon source and cost minimization. Findings from studies in this area suggest that potential sources include waste materials from various sectors, including the beverage and brewing industries, agriculture, biological refineries of paper pulp and sugar, microalgae-related industries, biodiesel production, and even textile waste. It can be exploited as a cost-effective source of carbon supply for the production of microbial  cellulose on an industrial scale. In this investigation, the utilization of bacterial cellulose and its manufacturing techniques are presented, alongside an examination of its application in the fabrication of eco-friendly films and constructions for food packaging. Furthermore, an analysis is conducted on the potential of generating bacterial cellulose utilizing waste materials as carbon sources.
 

Keywords

Main Subjects


Smiley face

[1] M. V. Ghica, E. Tudoroiu, and D. Ionescu, “Bacterial Cellulose — A Remarkable Polymer as a Source for Biomaterials Tailoring,” 2022.
[2] R. Naomi, R. Bt Hj Idrus, and M. B. Fauzi, “Plant- vs. Bacterial-Derived Cellulose for Wound Healing: A Review.,” Int. J. Environ. Res. Public Health, vol. 17, no. 18, Sep. 2020, doi: 10.3390/ijerph17186803.
[3] D. Lahiri et al., “Bacterial Cellulose: Production, Characterization, and Application as  Antimicrobial Agent.,” Int. J. Mol. Sci., vol. 22, no. 23, Nov. 2021, doi: 10.3390/ijms222312984.
[4] . M. C. Azeredo, H. Barud, C. S. Farinas, V. M. Vasconcellos, and A. M. Claro, “Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications,” Front. Sustain. Food Syst., vol. 3, no. February, 2019, doi: 10.3389/fsufs.2019.00007.
[5] Z. Shi, Y. Zhang, G. O. Phillips, and G. Yang, “Utilization of bacterial cellulose in food,” Food Hydrocoll., vol. 35, pp. 539–545, 2014, doi: https://doi.org/10.1016/j.foodhyd.2013.07.012.
[6] Z. N. Skvortsova, T. I. Gromovykh, V. S. Grachev, and V. Y. Traskin, “Physicochemical Mechanics of Bacterial Cellulose,” vol. 81, no. 4, pp. 366–376, 2019, doi: 10.1134/S1061933X19040161.
[7] A. Ashfaq, N. Khursheed, S. Fatima, Z. Anjum, and K. Younis, “Application of nanotechnology in food packaging: Pros and Cons,” J. Agric. Food Res., vol. 7, p. 100270, 2022, doi: https://doi.org/10.1016/j.jafr.2022.100270.
[8] N. Bumbudsanpharoke, J. Choi, and S. Ko, “Applications of Nanomaterials in Food Packaging,” vol. 15, no. 9, pp. 6357–6372, 2015, doi: 10.1166/jnn.2015.10847.
[9] C. Wang et al., “Bioactive and functional biodegradable packaging films reinforced with nanoparticles,” J. Food Eng., vol. 312, p. 110752, 2022, doi: https://doi.org/10.1016/j.jfoodeng.2021.110752.
[10] P. Cazón and M. Vázquez, “Bacterial cellulose as a biodegradable food packaging material: A review,” Food Hydrocoll., vol. 113, p. 106530, 2021, doi: https://doi.org/10.1016/j.foodhyd.2020.106530.
[11] Y. Sun et al., “The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: a comparative study.,” Cellulose, vol. 25, no. 10, pp. 5893–5908, 2018, doi: 10.1007/s10570-018-1968-z.
[12] Indriyati, F. Dara, I. Primadona, Y. Srikandace, and M. Karina, “Development of bacterial cellulose/chitosan films: structural, physicochemical and antimicrobial properties,” J. Polym. Res., vol. 28, no. 3, pp. 1–8, 2021, doi: 10.1007/s10965-020-02328-6.
[13] L. Urbina, M. Á. Corcuera, N. Gabilondo, A. Eceiza, and A. Retegi, “A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields,” Cellulose, vol. 28, no. 13, pp. 8229–8253, 2021, doi: 10.1007/s10570-021-04020-4.
[14] A. Santos, “Applications of bacterial cellulose in food , cosmetics and drug delivery,” 2016, doi: 10.1007/s10570-016-0986-y.
[15] R. Singhania, A. Patel, M.-L. Tsai, C.-W. Chen, and C.-D. Dong, “Genetic modification for enhancing bacterial cellulose production and its applications,” Bioengineered, vol. 12, pp. 6793–6807, Jan. 2021, doi: 10.1080/21655979.2021.1968989.
[16] P. Cazón and M. Vázquez, “Bacterial cellulose as a biodegradable food packaging material: A review,” Food Hydrocoll., vol. 113, 2021, doi: 10.1016/j.foodhyd.2020.106530.
[17] J. Wang, J. Tavakoli, and Y. Tang, “Bacterial cellulose production, properties and applications with different culture methods – A review,” Carbohydr. Polym., vol. 219, pp. 63–76, 2019, doi: 10.1016/j.carbpol.2019.05.008.
[18] A. Krystynowicz, W. Czaja, A. Wiktorowska-Jezierska, M. Gonçalves-Miśkiewicz, M. Turkiewicz, and S. Bielecki, “Factors affecting the yield and properties of bacterial cellulose,” J. Ind. Microbiol. Biotechnol., vol. 29, no. 4, pp. 189–195, 2002, doi: 10.1038/sj.jim.7000303.
[19] C. Molina-Ramírez et al., “Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis,” Materials, vol. 10, no. 6. 2017, doi: 10.3390/ma10060639.
[20] R. R. Singhania et al., “Developments in bioprocess for bacterial cellulose production,” Bioresour. Technol., vol. 344, p. 126343, 2022, doi: https://doi.org/10.1016/j.biortech.2021.126343.
[21] J. D. P. de Amorim et al., “Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review,” Environ. Chem. Lett., vol. 18, no. 3, pp. 851–869, 2020, doi: 10.1007/s10311-020-00989-9.
[22] M. Aurélio, C. Daniele, A. Mikowski, M. Rita, L. Pereira, and F. Wypych, “Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres : Effect of enzymatic treatment on mechanical properties,” Carbohydr. Polym., vol. 80, no. 3, pp. 866–873, 2010, doi: 10.1016/j.carbpol.2009.12.045.
[23] M. Salari, M. S. Khiabani, R. R. Mokarram, B. Ghanbarzadeh, and H. S. Kafil, “Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles,” Food Hydrocoll., 2018, doi: 10.1016/j.foodhyd.2018.05.037.
[24] T. Jayani, B. Sanjeev, S. Marimuthu, and S. Uthandi, “Bacterial Cellulose Nano Fiber ( BCNF ) as carrier support for the immobilization of probiotic , Lactobacillus acidophilus 016,” Carbohydr. Polym., vol. 250, no. August, p. 116965, 2020, doi: 10.1016/j.carbpol.2020.116965.
[25] E. S. Nascimento et al., “All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals,” Food Packag. Shelf Life, vol. 29, no. January, p. 100715, 2021, doi: 10.1016/j.fpsl.2021.100715.
[26] I. Reiniati, A. N. Hrymak, and A. Margaritis, “Critical Reviews in Biotechnology Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals,” vol. 8551, 2017, doi: 10.1080/07388551.2016.1189871.
[27] K. Y. Lee, Y. Aitomäki, L. A. Berglund, K. Oksman, and A. Bismarck, “On the use of nanocellulose as reinforcement in polymer matrix composites,” Compos. Sci. Technol., vol. 105, pp. 15–27, 2014, doi: 10.1016/j.compscitech.2014.08.032.
[28] B. Thomas et al., “Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications,” Chem. Rev., vol. 118, no. 24, pp. 11575–11625, 2018, doi: 10.1021/acs.chemrev.7b00627.
[29] M. Ghasemlou, F. Daver, E. P. Ivanova, Y. Habibi, and B. Adhikari, “Surface modifications of nanocellulose: From synthesis to high-performance nanocomposites,” Prog. Polym. Sci., vol. 119, p. 101418, 2021, doi: 10.1016/j.progpolymsci.2021.101418.
[30] S. Ju, F. Zhang, J. Duan, and J. Jiang, “Characterization of bacterial cellulose composite fi lms incorporated with bulk chitosan and chitosan nanoparticles : A comparative study,” Carbohydr. Polym., vol. 237, no. March, p. 116167, 2020, doi: 10.1016/j.carbpol.2020.116167.
[31] Y. Xu et al., “Development and properties of bacterial cellulose , curcumin , and chitosan composite biodegradable films for active packaging materials,” Carbohydr. Polym., vol. 260, no. February, p. 117778, 2021, doi: 10.1016/j.carbpol.2021.117778.
[32] S. Moradian and H. Almasi, “Development of bacterial cellulose-based active membranes containing herbal extracts for shelf life extension of button mushrooms ( Agaricus bisporus ),” no. June, pp. 1–13, 2017, doi: 10.1111/jfpp.13537.
[33] A. Renzetti, J. W. Betts, K. Fukumoto, and R. N. Rutherford, “Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure–activity relationships,” Food Funct., vol. 11, no. 11, pp. 9370–9396, 2020, doi: 10.1039/D0FO02054K.
[34] K. A. Zahan, N. M. Azizul, M. Mustapha, W. Y. Tong, M. S. A. Rahman, and I. S. Sahuri, “Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material,” Mater. Today Proc., vol. 31, no. xxxx, pp. 83–88, 2020, doi: 10.1016/j.matpr.2020.01.201.
[35] A. Abel Anzaku, A. Akyala, J. Adeola, and C. Ewenighi, “Antibacterial Activity of Lauric Acid on Some Selected Clinical Isolates,” Ann. Clin. Lab. Res., vol. 05, Jan. 2017, doi: 10.21767/2386-5180.1000170.
[36] M. L. Dobre and A. Stoica-guzun, “Antimicrobial Ag-Polyvinyl Alcohol-Bacterial Cellulose Composite Films,” vol. 7, no. 1, pp. 157–162, 2013, doi: 10.1166/jbmb.2013.1272.
[37] M. A. AbuDalo, I. R. Al-Mheidat, A. W. Al-Shurafat, C. Grinham, and V. Oyanedel-Craver, “Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction  with phytochemicals and assessment of their antimicrobial activity.,” PeerJ, vol. 7, p. e6413, 2019, doi: 10.7717/peerj.6413.
[38] I. M. Jipa, A. Stoica-guzun, and M. Stroescu, “Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films,” LWT - Food Sci. Technol., vol. 47, no. 2, pp. 400–406, 2012, doi: 10.1016/j.lwt.2012.01.039.
[39] T. G. Volova et al., “Bacterial Cellulose ( BC ) and BC Composites : Production and Properties,” Nanomaterials, vol. 12, no. 8, 2022.
[40] M. Ver, G. G. E, and P. Mar, “Biosynthesized silver nanoparticles: decoding their mechanism of action in Staphylococcus aureus and Escherichia coli,” Int. J. Biochem. Cell Biol., 2018, doi: 10.1016/j.biocel.2018.09.006.
[41] F. Shahmohammadi and H. Almasi, “Morphological , physical , antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films,” Carbohydr. Polym., vol. 149, pp. 8–19, 2016, doi: 10.1016/j.carbpol.2016.04.089.
[42] M. Salari, M. Sowti Khiabani, R. Rezaei Mokarram, B. Ghanbarzadeh, and H. Samadi Kafil, “Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles,” Food Hydrocoll., vol. 84, pp. 414–423, 2018, doi: https://doi.org/10.1016/j.foodhyd.2018.05.037.
[43] A. Mocanu, G. Isopencu, C. Busuioc, O.-M. Popa, P. Dietrich, and L. Socaciu-Siebert, “Bacterial cellulose films with ZnO nanoparticles and propolis extracts: Synergistic antimicrobial effect,” Sci. Rep., vol. 9, no. 1, p. 17687, 2019, doi: 10.1038/s41598-019-54118-w.
[44] S. Sheykhnazari, T. Tabarsa, A. Ashori, and A. Ghanbari, “Bacterial cellulose composites loaded with SiO2 nanoparticles: Dynamic-mechanical and thermal properties,” Int. J. Biol. Macromol., vol. 93, pp. 672–677, 2016, doi: https://doi.org/10.1016/j.ijbiomac.2016.09.035.
[45] T. G. Volova et al., “Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics,” Polym. Test., vol. 65, pp. 54–68, 2018, doi: https://doi.org/10.1016/j.polymertesting.2017.10.023.
[46] D. Yan, Y. Li, Y. Liu, N. Li, X. Zhang, and C. Yan, “Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of  Enteric Infections.,” Molecules, vol. 26, no. 23, Nov. 2021, doi: 10.3390/molecules26237136.
[47] Z. Hussain, W. Sajjad, T. Khan, and F. Wahid, “Production of bacterial cellulose from industrial wastes : a review,” Cellulose, vol. 1, 2019, doi: 10.1007/s10570-019-02307-1.
[48] S. Keshk and K. Sameshima, “The utilization of sugar cane molasses with / without the presence of lignosulfonate for the production of bacterial cellulose,” pp. 291–296, 2006, doi: 10.1007/s00253-005-0265-6.
[49] A. Kadier et al., “Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives,” Polymers (Basel)., vol. 13, no. 19, Sep. 2021, doi: 10.3390/polym13193365.
[50] C. Campano, A. Balea, A. Blanco, and C. Negro, “Enhancement of the fermentation process and properties of bacterial cellulose : a review,” Cellulose, 2015, doi: 10.1007/s10570-015-0802-0.
[51] J. Wu and R. Liu, “Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus,” Carbohydr. Polym., vol. 90, no. 1, pp. 116–121, 2012, doi: 10.1016/j.carbpol.2012.05.003.
[52] V. Revin, E. Liyaskina, M. Nazarkina, A. Bogatyreva, and M. Shchankin, “Cost-effective production of bacterial cellulose using acidic food industry by-products,” Brazilian J. Microbiol., pp. 1–9, 2018, doi: 10.1016/j.bjm.2017.12.012.
[53] C. Castro, R. Zuluaga, J. L. Putaux, G. Caro, I. Mondragon, and P. Gañán, “Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes,” Carbohydr. Polym., vol. 84, no. 1, pp. 96–102, 2011, doi: 10.1016/j.carbpol.2010.10.072.
[54] A. Kurosumi, C. Sasaki, Y. Yamashita, and Y. Nakamura, “Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693,” Carbohydr. Polym., vol. 76, no. 2, pp. 333–335, 2009, doi: 10.1016/j.carbpol.2008.11.009.