Study on Nano-Packaging Coatings and its Role on Quality Control of Food Products

Document Type : Scientific Paper

Authors

1 Post Doctoral Research Fellow, Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Associate Prof/Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Nanotechnology can be used in the food industry for food production, processing, storage and quality control. Nanomaterials, because of their new properties, dissimilar to conventional microscale materials can enhance the sensory quality of foods by presenting new texture, color and appearance. Nanotechnology is used to design nano-sensors and detect harmful components in foods and smart packaging systems, as it enables the detection of food contamination at a very high speed and sensitivity. Smart and active packaging has led to many innovations for the food industry and other industries in the future. Using nanotechnology, new packaging is being improved that enhances the shelf life of foods by improving the mechanical, antimicrobial and inhibitory properties. This article provides an overview on the classification, basic methods, and safety issues of nanomaterials in the food industry.

Keywords


1. Lim, L.T. (2011). "Active and intelligent packaging materials (2nd ed.). In Comprehensive biotechnology," (629-644), Amsterdam, The Netherlands: Elsevier.
2. Schmidt, D., Shah, D., & Giannelis, E. P. (2002). "New advances in polymer/layered silicate nanocomposites". Current Opinion in Solid State and Materials Science, 6, 205-212.
3. Thostenson, E. T., Li, C., & Chou, T.-W. (2005). "Nanocomposites in context". Composites Science and Technology, 65, 491-516.
4. Mihindukulasuriya, S.D.F., Lim L.-T. (2014). "Nanotechnology development in food packaging: A review". Trends in Food Science & Technology, 40(2), 149-167. 2014
5. Bajpai, VK, Kamle, M., Shukla, S., Mahato, D.K., Chandra, P., et al. (2018). "Prospects of using nanotechnology for food preservation, safety, and security". J Food Drug Anal. 26: 1201-1214.
6. Dwivedi, C., Pandey, I., Misra, V., Giulbudagian, M., Jungnickel, H., et al. (2018). "The prospective role of nanobiotechnology in food and food packaging products". Integrative Food, Nutrition and Metabolism 5: (6), 1-5.
7. Hemati, F, Garmabi, H. (2011). "Compatibilised LDPE/LLDPE/nanoclay nanocomposites: I. Structural, mechanical, and thermal properties". The Canadian Journal of Chemical Engineering 89: (1), 187-196.
8. Rhim, J.-W., Wang, L.-F., Lee, Y., & Hong, S.-I. (2014). "Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method". Carbohydrate Polymers, 103, 456-465.
9. Arvanitoyannis, I. S., & Bosnea, L. A. (2001). "Recycling of polymeric materials used for food packaging: current status and perspectives". Food Reviews International, 17, 291-346.
10. Ajayan, P.M.; Schadler, L.S.; Braun, P.V. (2003). "Nanocomposite Science and Technology". Wiley-VCH: Weinheim, Germany.
11. Tanahashi, M. (2010). "Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding- Based Approach without Surface Modification of Nanofillers". Materials, 3, 1593-1619.
12. Scharlach, K., Kaminsky, W. (2008). "New polyolefin-nanocomposites by in situ polymerization with metallocene catalysts". Macromolecular Symposia. 261, 10−17.
13. Ahari, H.  (2017). "The Use of Innovative Nano emulsions and Nano-Silver Composites Packaging for anti-bacterial properties: An article review". Iranian Journal of Aquatic Animal Health, 3(1) 61-73.
14. Kalaitzidou, K.; Fukushima, H., Drzal, L.T. (2007). "A new compounding method for exfoliated graphitepolypropylene nanocomposites with enhanced flexural properties and lower percolation threshold". Composites Science and Technology, 67, 2045−2051.
15. Xie, L., Lv, X.-Y., Han, Z.-J., Ci, J.-H., Fang, C.-Q., & Ren, P.-G. (2012). "Preparation and performance of high-barrier low density polyethylene/organic montmorillonite nanocomposite". Polymer-Plastics Technology and Engineering, 51, 1251-1257.
16. Mondal, D., Mollick, M. M. R., Bhowmick, B., Maity, D., Bain, M. K., Rana, D., et al. (2013). "Effect of poly (vinyl pyrrolidone) on themorphology and physical properties of poly (vinyl alcohol)/sodium montmorillonite nanocomposite films". Progress in Natural Science: Materials International, 23, 579-587.
17. Akbari, Z., Ghomashchi, T., & Moghadam, S. (2007). "Improvement in food packaging industry with biobased nanocomposites". International Journal of Food Engineering, 3(4). DOI: https://doi.org/10.2202/1556-3758.1120.
18. Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). "Intelligent packaging: concepts and applications". Journal of Food Science, 70, R1-R10.
19. Weiss, J., Takhistov, P., & Mc Clements, D. J. (2006). "Functional materials in food nanotechnology". Journal of Food Science, 71, 107–116.
20. Ravichandran, R. (2010). "Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market". International Journal of Green Nanotechnology: Biomedicine 1, 72–96.
21. Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S. (2011). "Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice". Food Control, 22:408–413
22. Valipoor Motlagh, N., Mosavian, M H. & Mortazavi, S.A. (2013). "Effect of Polyethylene Packaging Modified with Silver Particles on the Microbial, Sensory and Appearance of Dried Barberry". Packaging Technology and Science, 26: 39-49. doi:10.1002/pts.1966
23. Panea, B. Ripoll, G., González, J., Fernández-Cuello, A., Albertí, P. (2014). "Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality". Journal of Food Engineering,123: 104-112.
24. Metak, A.M., Ajaal, T. T. (2013)." Investigation on Polymer Based Nano-Silver as Food Packaging Materials". Digital Open Science Index, Chemical and Molecular Engineering, 7(12), waset.org/Publication/9996608
25. Metak, A.M., Nabhani, F., Connolly, S.N. (2015). "Migration of engineered nanoparticles from packaging into food products". LWT - Food Science and Technology, 64, 2, 781-787.
26. Li, L., Chanjuan, Z., Zhang,Y., Yao, J., Yang, W., Hu, Q., et al. (2017). "Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice". Food Chemistry, 215, 477-482.
27. Donglu, F., Wenjian, Y., Kimatu, B. Muinde, Mariga, A. Mugambi, Liyan, Z., Xinxin, A., & Qiuhui, H. (2016). "Effect of nanocomposite-based packaging on storage stability of mushrooms (Flammulina velutipes)". Innovative food science & emerging technologies, 33, 489-497.
28. Lloret, E., Picouet, P., & Fern_andez, A. (2012). "Matrix effects on the antimicrobial capacity of silver based nanocomposite absorbing materials". LWT-Food Science and Technology, 49, 333-338.
29. Fernández, A., Picouet, P., Lloret, E. (2010). "Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat". Journal of Food Protection, 73(12): 2263-9.
30. Dias, MV, Soares, Nde, F., Borges, SV, de Sousa, MM, Nunes, CA, de Oliveira, IR, Medeiros, EA. (2013). "Use of allyl isothiocyanate and carbon nanotubes in an antimicrobial film to package shredded, cooked chicken meat". Food Chemistry, 1;141(3):3160-6.
31. Li, X. H., Xing, Y. G., Li, W. L., Jiang, Y. H., & Ding, Y. L. (2010). "Antibacterial and physical properties of poly (vinyl chloride)-based film coated with ZnO nanoparticles". Food Science and Technology International, 16, 225-232.
32.Picouet, PA, Fernandez, A., Realini, CE, Lloret, E. (2014). "Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage in modified atmospheres". Meat Science,96(1):574-80.
33. Mastromatteo, M., Lucera, A., Esposto, D., Conte, A., Faccia, M., Zambrini, A., Del Nobile, M. (2015). "Packaging optimisation to prolong the shelf life of fiordilatte cheese". Journal of Dairy Research, 82(2), 143-151.
34.Siripatrawan, U., Kaewklin, P. (2018). "Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging". Food Hydrocolloids, 84, 125-134.
35. Pirsa, S., Shamusi, T. (2019). "Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film." Materials Science & Engineering C 102, 798–809.
36. Saral Sarojini, K., Indumathi, M.P., Rajarajeswari, G.R. (2019). "Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications". International Journal of Biological Macromolecules, 124, 163–174.
37. Ahari, H., Dastmalchi, F., Ghezelloo, Y., Paykan, R., Fotovat, M. & Rahmannya, J. (2008). 'The application of silver nano-particles to the reduction of bacterial contamination in poultry and animal production". Food Manufacturing Efficiency,2(1), 49.
38. Costa, C., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011). "Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad". International Journal of Food Microbiology, 148, 164e167.
39. Gammariello, D., Conte, A., Buonocore, G.G., Del Nobile, M.A. (2011). "Bio-based nanocomposite coating to preserve quality of Fior di latte cheese". Journal of Dairy Science. 94, 5298–5304.
40. Costa, C., Conte, A., Buonocore, G. G., Lavorgna, M., & Del Nobile, M. A. (2012). "Calcium-alginate coating loaded with silvermontmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots". Food Research International, 48, 164e169.
41. Martinez-Abad, A., Lagaron, J.M., Ocio, M.J. (2012). "Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for food-packaging applications". Journal of Agricultural and Food Chemistry. 60, 5350–5359.
42. Khalaf, H.H., Sharoba, A.M., El-Tanahi, H.H. & Morsy, M.K. (2013). "Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on turkey deli meat quality". Journal of Food and Dairy Science,  4 (11): 557 – 573.
43. Volpe, M. G., Stasio, M. D., Paolucci,M., andMoccia, S. (2015). "Polymers for food shelf-life extension." in Functional Polymers in Food Science FromTechnology to Biology Food Packaging, eds G. Cirillo, U. G. Spizzirri, and F. Iemma (Hoboken, NJ: JohnWiley & Sons, Inc.), 9–61.
44. Cozmuta, A. M., Peter, A., Cozmuta, L. M., Nicula, C., Crisan, L., Baia, L., et al. (2015). "Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread, Chemical and Microbiological Investigation". Packaging Technology and Science, 28, 271–284.
45. Donglu, F., Kelin, Y., Zilong, D., Qiuhui, H., Liyan, Z. (2019). "Storage quality and flavor evaluation of Volvariella volvacea packaged with nanocomposite-based packaging material during commercial storage condition". Food Packaging and Shelf Life, 22, 100412.
46. Dash, K.K., Afzal, N.A., Dipannita, D., Mohanta D. (2019). "Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications". International Journal of Biological Macromolecules 139, 449–458.
47. Nazari, M., Majdi, H., Milani, M., Abbaspour-Ravasjani, S., Hamishehkar, H., Lim, L. (2019). "Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging". Food Packaging and Shelf Life, 21,100349.
48. Echegoyen, Y., & Nerin, C. (2013). "Nanoparticle release from nanosilver antimicrobial food containers". Food and Chemical Toxicology, 62, 16-22. 2013.
49. Das, M., Saxena, N., & Dwivedi, P. D. (2008). "Emerging trends of nanoparticles application in food technology: safety paradigms". Nanotoxicology, 3, 10-18.
50. De Jong, A. R., Boumans, H., Slaghek, T., Van Veen, J., Rijk, R., & Van Zandvoort, M. (2005). "Active and intelligent packaging for food: is it the future?". Food Additives and Contaminants, 22, 975-979.
51. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al. (2008). "Applications and implications of nanotechnologies for the food sector". Food Additives and Contaminants, 25, 241-258.
52. Brody A.L., Zhuang, H. & Han, J. H. (2011). "Modified atmosphere packaging for fresh-cut fruits and vegetables". Wiley-Blackwell, pp 314.
  • Receive Date: 23 October 2019
  • Revise Date: 21 November 2019
  • Accept Date: 21 January 2020
  • Publish Date: 19 February 2020