مروری بر کاربرد آئروژل‌ها در بسته‌بندی مواد غذایی

نوع مقاله : ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

هدف این مقاله بررسی خصوصیات شیمیایی و مرور موارد کاربرد آئروژل‌ها در بسته‌بندی مواد غذایی است. در این مقاله مروری، به تشریح ساختار آئروژل‌ها پرداخته شده و انواع آئروژل‌ها طبقه­بندی شده است. برای تولید آئروژل‌ها از هیدروژل‌های پلی ساکاریدی و پروتئینی و همچنین ارگانوژل‌ها استفاده می‌شود. خشک کردن فوق بحرانی و خشک کردن انجمادی متداول‌ترین روش‌های تولید آئروژل‌ها هستند که در این مقاله به آنها پرداخته شده است. در ادامه، به جنبه‌های مختلف کاربرد آئروژل‌ها در بسته‌بندی مواد غذایی پرداخته شده است. از آئروژل‌ها در ایجاد عایق حرارتی در بسته‌بندی مواد غذایی، بهبود خصوصیات مکانیکی بسته‌بندی، جذب رطوبت ماده غذایی و همچنین بارگذاری ترکیبات زیست فعال و نشانگرها در تولید بسته‌بندی فعال و هوشمند مواد غذایی استفاده شده است. آئروژل‌ متخلخل با عملکرد عایق حرارتی، جایگزینی مناسب برای پلی‌استایرن منبسط‌شده در بسته‌بندی محصولات غذایی گرم و رستورانی محسوب می‌شود. ماهیت متخلخل و منفذدار آئروژل آن را به یک سوپرجاذب قوی رطوبت تبدیل می‌کند که باعث توسعه کاربرد آن در بسته‌بندی مواد غذایی حساس به رطوبت شده است. افزودن ترکیبات ضدمیکروبی مانند اسانس‌ها و نانوذرات و تولید بسته‌بندی فعال از جمله کاربردهای دیگر آئروژل‌ها در بسته‌بندی مواد غذایی است که در این مقاله مروری تشریح شده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Applications of Aerogels in Food Packaging

نویسندگان [English]

  • Najmeh Sohrabi 1
  • Hadi Almasi 2
1 Department of food science, Faculty of agriculture, Urmia university
2 Department of Food Science, Faculty of agriculture, Urmia university
چکیده [English]

The aim of this paper is to investigate the chemical characteristics and review the applications of aerogels in food packaging. In this review article, the structure of aerogels is explained and the types of aerogels are classified. The polysaccharide and protein-based hydrogels and also organogels are used for the preparation of aerogels. The super critical drying and freeze drying are two common methods used for the production of aerogels which have been explained in this article. At the next step, different aspects of using aerogels in food packaging have been investigated. Aerogels have been used in creating thermal insulation in food packaging, absorbing food moisture, improving mechanical properties of the packaging system, and also loading bioactive compounds and indicators in the production of active and smart food packaging. The porous aerogel with thermal insulation properties is a great candidate for the substitution of expanded polystyrene in the packaging of hot restaurant foods. The mesoporous structure of the aerogel has made it a strong moisture super-absorbent leading to the growth of its application for packaging moisture sensitive foods. The incorporation of antimicrobial agents such as essential oils and nanoparticles and the preparation of active packaging are some other applications of aerogels in food packaging that have been explained in this review paper.  

کلیدواژه‌ها [English]

  • Aerogel
  • Hydrogel
  • Freeze Drying
  • Thermal Insulation
  • Almasi, N, Ghadiri, and N. Sohrabi, “Time-temperature indicators as food smart packaging: the types, operation mechanisms and applications,” J. Pack. Sci. & Art, vol 12(2), pp. 9-18, 2021 (In Persian).
  • Zheng, Y.Tian, F.Ye, Y.Zhou, and G.Zhao, “Fabrication and application of starch-based aerogel: Technical strategies,” Trend. Food Sci. & Technol., vol. 99 pp. 608-620, 2020.
  • A. García-Gonz´alez, T. Budtova, L. Duraes, C. Erkey, P. Del Gaudio, and P. Gurikov, “An opinion paper on aerogels for biomedical and environmental applications,” Molecules, vol. 24, no. 9, pp. 15-21, 2019.
  • Lehtonen, S. Kekalainen, I. Nikkila, P. Kilpelainen, M. Tenkanen, and K. S. Mikkonen, “Active food packaging through controlled in situ production and release of hexanal,” Food Chem: X, vol. 5, pp. 100074-100092, 2020.
  • Plazzotta, S. Calligaris, and L. Manzocco, “Application of different drying techniques to fresh-cut salad waste to obtain food ingredients rich in antioxidants and with high solvent loading capacity,” LWT- Food Sci. & Technol, vol. 89, pp. 276–283, 2018.
  • Selmer, J. Karnetzke, C. Kleemann, M. Lehtonen, K. S. Mikkonen and U. Kulozik, “Encapsulation of fish oil in protein aerogel micro-particles,” J. Food Eng., vol. 260, pp. 1–11, 2019.
  • Budtova, “Cellulose II aerogels: A review,” Cellulose, vol. 26, pp. 81–121, 2019.
  • Du, B. Zhou, Z. H.Zhang and J. Shen, “A special material or a new state of matter: A review and reconsideration of the aerogel,” Materials, vol. 6, pp. 941–968, (2013).
  • D. Gesser and P. C, Goswami, “Aerogels and related porous materials,” Chem. Rev., vol. 89, pp. 765–788, 1989.
  • S. Kistler, “Coherent expanded aerogels and jellies,” Nature, vol. 127(3211), pp. 741-752, 1931.
  • C. Pierre and G. M. Pajonk, “Chemistry of aerogels and their applications,” Chem. Rev., vol. 102, pp. 4243–4265, 2002.
  • Zhao, W. J. Malfait, N. Guerrero-Alburquerque, M. M. Koebel and G. Nystr¨om, “Biopolymer aerogels and foams: Chemistry, properties, and applications,” Angewandte Chemie, vol. 57, pp. 7580–7608, 2018.
  • E. El-Naggar, S. I. Othman, A. A. Allam and O. M. Morsy, “Synthesis, drying process and medical application of polysaccharide-based aerogels,” Int. J. Biol. Macromol., vol. 145, pp. 1115–1128, 2020.
  • A. García-Gonzalez, M. Alnaief and I. Smirnova, “Polysaccharide-based aerogels – Promising biodegradable carriers for frug delivery systems,” Carbohydr. Polym., vol. 86, pp. 1426–1438, 2011.
  • E. Nita, A. Ghilan, A. G. Rusu, I. Neamtu, and A. P. Chiriac, “New trends in biobased aerogels,” Pharmaceutics, vol. 12, p. 449, 2020.
  • Betz, C. A. García-Gonzalez, R. P. Subrahmanyam, I. Smirnova, and U. Koluzik, “Preparation of novel whey protein-based aerogels as drug carriers for life science,” J. Supercrit. Fluid., vol. 72, pp. 111–119, 2012.
  • Del Gaudio, G. Auriemma, T. Mencherini, G. D. Porta, E. Reverchon and R. P. Aquino, “Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercriticalassisted drying,” J. Pharm. Sci., vol. 102, pp. 185–194, 2013.
  • A. García-Gonz´alez, M. Jin, J. Gerth, C. Alvarez-Lorenzo and I. Smirnova, “Polysaccharide-based aerogel microspheres for oral drug delivery,” Carbohydr. Polym., vol. 117, pp. 797–806, 2015.
  • Manzocco, K. S. Mikkonen and C. A. García-González, “Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials,” Food Struc., vol. 28, p. 100188, 2021.
  • Baudron, M. Taboada, P. Gurikov, I. Smirnova and S. Whitehouse, “Production of starch aerogel in form of monoliths and microparticles,” Coll. & Polym. Sci., vol. 298, pp. 477–494, 2020.
  • Zheng, Y. Tian, F. Ye, Y. Zhou and G. Zhao, “Fabrication and application of starch-based aerogels: Technical strategies,” Trend. Food Sci. & Technol., vol. 99, pp. 608–620, 2020.
  • Ivanovic, S. Milovanovic and I. Zizovic, “Utilization of supercritical CO2 as a processing aid in setting functionality of starch-based,” Materials, vol. 68, pp. 821–833, 2016.
  • S. Mikkonen, K. Parikka, A. Ghafar and M. Tenkanen, “Prospects of polysaccharide aerogels as modern advanced food materials,” Trend. Food Sci. & Technol., vol. 34, pp. 124–136, 2013.
  • Ubeyitogullari and O. N. Ciftci, “Formation of nanoporous aerogels from wheat starch,” Carbohydr. Polym., vol. 147, pp. 125–132, 2016.
  • M. Comin, F. Temelli and M. D. A. Saldana, “Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2,” J. Food Eng., vol. 111, pp. 625–631, 2012.
  • S. Mikkonen, K. Parikka, J.-P. Suuronen, A. Ghafar, R. Serimaa and M. Tenkanen, “Enzymatic oxidation as a potential new route to produce polysaccharide aerogels,” RSC Adv., vol. 4, pp. 11884–11892, 2014.
  • Parikka, I. Nikkila, L. Pitkanen, A. Ghafar, T. Sontag-Strohm and M. Tenkanen, “Laccase/TEMPO oxidation in the production of mechanically strong arabinoxylan and glucomannan aerogels,” Carbohydr. Polym., vol. 175, pp. 377–386, 2017.
  • Ubeyitogullari and O. N. Ciftci, “Fabrication of bioaerogels from camelina seed mucilage for food applications,” Food Hydrocoll., vol. 102, p. 105597, 2020.
  • J. White, V. L. Budarin, and J. H. Clark, “Pectin-derived porous materials,” Chem. Eur. J., vol. 16, pp. 1326–1335. 2010.
  • Alnaief, M. A. Alzaitoun, C. A. García-Gonzalez and I. Smirnova, “Preparation of biodegradable nanoporous microspherical aerogel based on alginate,” Carbohydr. Polym., vol. 84, pp. 1011–1018, 2011.
  • R. Escudero, M. Robitzer, F. Di Renzo and F. Quignard, “Alginate aerogels as adsorbents of polar molecules from liquid hydrocarbons: Hexanol as probe molecule,” Carbohydr. Polym., vol. 75, pp. 52–57, 2009.
  • R. Mallepally, I. Bernard, M. A. Marin, K. R. Ward and M. A. McHugh, “Superabsorbent alginate aerogels,” J. Supercrit. Fluid, vol. 79, pp. 202–208, 2013.
  • Bilanovic, J. Starosvetsky and R. H. Armon, “Preparation of biodegradable xanthan-glycerol hydrogel, foam, film, aerogel and xerogel at room temperature,” Carbohydr. Polym., vol. 148, pp. 243–250, 2016.
  • Manzocco, F. Valoppi, S. Calligaris, F. Andreatta, S.Spilimbergo, and M. C. Nicoli, “Exploitation of k-carrageenan aerogels as template for edible oleogel preparation,” Food Hydrocoll., vol. 71, pp. 68–75, 2017.
  • K. Liu, C. C. Zhou, S. Mou, J. L. Li, Zhou and Y. Y. Zeng, “Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration,” Mat. Sci. & Eng. C- Mat. Biol. App., vol. 105, p. 110137, 2019.
  • Mehling, I. Smirnova, U. Guenther and R. H. H. Neubert, “Polysaccharidebased aerogels as drug carriers,” J. Non-Crystal. Solid., vol. 355, pp. 2472–2479, 2009.
  • Munoz-Ruiz, D. M. Escobar-García, M. Quintana, A. Pozos-Guillen, A. Pozos- Guillen and H. Flores, “Synthesis and characterization of a new collagenalginate aerogel for tissue engineering,” J. Nanomat., vol. 2019, 2019.
  • Zeynep and C. Erkey, “An emerging platform for drug delivery: Aerogel based systems,” J. Control. Rel., vol. 177, pp. 51–63, 2014.
  • -B. Chen, Y.-Z. Wang and D. A. Schiraldi, “Foam-like materials based on whey protein isolate,” Euro. Polym. J., vol. 49, pp. 3387–3391, 2013.
  • Kleemann, I. Selmer, I. Smirnova and U. Kulozik, “Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium casinate: Influence of the preceding hydrogel characteristics,” Food Hydrocoll., vol 83, pp. 365–374, 2018.
  • Selmer, C. Kleemann, U. Kulozik, S. Heinrich and I. Smirnova, “Development of egg white protein aerogels as new material for microencapsulation in food,” J. Supercrit. Fluid., vol. 106, pp. 42–49, 2015.
  • C. Arboleda, M. Hughes, L. A. Lucia, J. Laine, K. Ekman and O. J. Rojas, “Soy protein-nanocellulose composite aerogels,” Cellulose, vol. 20, pp. 2417–2426, 2013.
  • Santos-Rosales, I. Ardao, C. Alvarez-Lorenzo, N. Ribeiro, A. L. Oliveira and C. A. García- Gonzalez, “Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO2-based approach,” Molecules, vol. 24, p. 871, 2019.
  • L. Li, Y. Y. Ge and L. Wan, “Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media,” J. Hazard. Mat., vol. 285, pp. 77–83, 2015.
  • Gaˇcanin, C. V. Synatschke and T. Weil, “Biomedical applications of DNA-based hydrogels,” Adv. Func. Mat., vol. 30, Article 1906253, 2019.
  • D. Co and A. G. Marangoni, “Organogels: An alternative edible oil structuring method,” J. Am. Oil Chem’ Soc., vol. 89, pp. 749–780, 2012.
  • R. Patel and K. Dewettinck, “Edible oil structuring: An overview and recent updates,” Food & Func., vol. 7, pp. 20–29, 2016.
  • T´erech and R. G. Weiss, “Low molecular mass gelators of organic liquids and the properties of their gels,” Chem. Rev., vol. 97, pp. 3133–3159, 1997.
  • Davidovich-Pinhas, S. Barbut and A. G. Marangoni, “The gelation of oil using ethyl cellulose,” Carbohydr. Polym., vol. 117, pp. 869–878, 2015.
  • Huang, M. He, A. Lu, W. Z. Zhou, S. D. Stoyanovand E. G. Pelan, “Hydrophobic modification of chitin whiskers and its potential application in structuring oil,” Langmuir, vol. 31, pp. 1641–1648, 2015.
  • Laredo, S. Barbut and A. G. Marangoni, “Molecular interactions of polymer oleogelation,” Soft Matter, vol. 6, pp. 2734–2743, 2011.
  • V. Nikiforidis and E. Scholten, “Polymer organogelation with chitin and chitin nanocrystals,” RSC Adv., vol. 5, pp. 37789–37799, 2015.
  • R. Patel, “Structuring edible oils with hydrocolloids: where do we stand,” Food Biophys., vol. 13, pp. 113–115, 2018.
  • I. Romoscanu and R. Mezzenga, “Emulsion-templated fully reversible protein-in-oil gels,” Langmuir, vol. 22, pp. 7812–7818, 2006.
  • Manzocco, F. Basso, S. Plazzotta and S. Calligaris, “Study on the possibility of developing food-grade hydrophobic bio-aerogels by using an oleogel template approach,” Cur. Res. Food Sci., vol. 21, pp. 32-39, 2021.
  • P. Vareda, A. Lamy-Mendes and L. Durães, “A reconsideration on the definition of the term aerogel based on current drying trends,” Micropor. & Mesopor. Mat., vol. 258, pp. 211–216. 2018.
  • S. Kistler, “Coherent expanded aerogels and jellies,” Nature, vol. 127, pp. 741, 1931.
  • Liu, F. Yao, O. Oderinde, Z. Zhang and G. Fu, “Green synthesis of oriented xanthan gum-graphene oxide hybrid aerogels for water purification,” Carbohydr. Polym., vol. 174, pp. 392–399, 2017.
  • Estella, J. C. Echeverría, M. Laguna and J. J. Garrido, “Effect of supercritical drying conditions in ethanol on the structural and textural properties of silica aerogels,” J. Porous Mat., vol. 15, no. 6, pp. 705–713, 2008.
  • A. García-González, M. C. Camino-Rey, M. Alnaief, C. Zetzl and I. Smirnova, “Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties,” J. Supercrit. Fluid., vol. 66, pp. 297–306, 2012.
  • Tai, M. L. Mather, D. Howard, W. Wang, L. J. White, J. A. Crowe and K. M. Shakesheff, “Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing,” Euro. Cells & Mat., vol. 14, pp. 64–77, 2007.
  • Wang, Y. Su, W. Wang, Y. Fang, S. B. Riffat and F. Jiang, “The advances of polysaccharide-based aerogels: Preparation and potential application,” Carbohydr. Polym., vol. 226, p. 115242, 2019.
  • [63] X. W. Ni, F. Ke, M. Xiao, K. Wu, Y. Kuang, H. Corke and F. T. Jiang, “The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels,” Int. J. Biol. Macromol., vol. 92, pp. 1130–1135, 2016.
  • [64] Y. Wang, L. Zhu, F. Y. Zhu, L. J. You, X. Q. Shen and S. J. Li, “Removal of organic solvents/oils using carbon aerogels derived from waste durian shell,” J. Taiwan Inst. Chem. Eng., vol. 78, pp. 351–358, 2017.
  • [65] R. Dobrucka and R. Przekop, “New perspectives in active and intelligent food packaging,” J. Food Proc. & Preserv., vol. 43, Article e 14194, 2019.
  • [66] Y.Yan, F. Ge, Y. Qin, M. Ruan, Z. Guo and C. He, “Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators,” Carbohydr. Polym., vol. 248, Article 116755, 2020.
  • [67] O. N. Khlebnikov, I. V. Postnova, L.-J. Chen and Y. A. Shchipunov, “Silication of dimensionally stable cellulose aerogels for improving their mechanical properties” Coll. J., vol. 82, pp. 448–459, 2020.
  • [68] F. T. da Silva, J. P. de Oliveira, L. M. Fonseca, G. P. Bruni, E. da Rosa Zavareze and A. R. G. Dias, “Physically cross-linked aerogels based on germinated and non- germinated wheat starch and PEO for application as water absorbers for food packaging,” Int. J. Biol. Macromol., vol. 155, pp. 6–13, 2020.
  • [69] J. P. de Oliveira, G. P. Bruni, M. J. Fabra, E. da Rosa Zavareze, A. López-Rubio and M. Martínez-Sanz, “Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed,” Food Hydrocoll., vol. 89, pp. 337-350, 2019.
  • [70] A. Nešić, M. Gordić, S. Davidović, Ž. Radovanović, J. Nedeljković, I. Smirnova and P. Gurikov, “Pectin-based nanocomposite aerogels for potential insulated food packaging application,” Carbohydr. Polym., vol. 195, pp. 128–135, 2018.
  • [71] S. Groult and T. Budtova, “Tuning structure and properties of pectin aerogels,” Euro. Polym. J., vol. 108, pp. 250–261, 2018.
  • [72] M. Lehtonen, S. Kek¨al¨ainen, I. Nikkil¨a, P. Kilpel¨ainen, M. Tenkanen and K. S. Mikkonen, “Active food packaging through controlled in situ production and release of hexanal,” Food Chem.: X, vol. 5, 2020.
  • [73] L. M. Fonseca, F. T. da Silva, G. P. Bruni, C. D. Borges, E. da Rosa Zavareze and A. R. G. Dias, “Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging,” International Journal of Biological Macromolecules, vol. 169, pp. 362-370, 2021.
  • [74] I. Benito-González, A. López-Rubio, P. Galarza-Jiménez and M. Martínez-Sanz, “Multifunctional cellulosic aerogels from Posidonia oceanica waste biomass with antioxidant properties for meat preservation,” International Journal of Biological Macromolecules, vol. 185, pp. 654-663, 2021.
  • Wu, Y. Lin and P. Shao, “Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi,” Food Chemistry, vol. 374, 2022.
  • Zhou, J. Fang, S. Tang, Z. Wu and X. Wang, “3D-printed nanocellulose-based cushioning–antibacterial dual-function food packaging aerogel,” Molecules, vol. 26 no. 12, p. 3543, 2021.