شناسایی آلودگی باکتری‌های لیستریا مونوسایتوژنز، سالمونلا تیفی موریوم و استافیلوکوکوس اروئوس در محیط کشت با استفاده از ‏نانوحسگر رنگی ‏ساخته شده از نانو صفحات گرافن اکسید آمین‌دار شده و شناساگر ‏برموفنول ‏آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه فرآوری محصولات شیلاتی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

2 استاد، گروه فرآوری محصولات شیلاتی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

3 دانشیار گروه محیط زیست، دانشکده منابع طبیعی و علوم دریایی، داشگاه تربیت مدرس، نور، ایران

4 استادیار پژوهشکده آبزی پروری آبهای داخلی، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج; کشاورزی، بندر

چکیده

امروزه کاربرد بسته ­بندی ­های هوشمند در صنایع مختلف بسته ­بندی بیشتر از گذشته مورد توجّه صنعت قرار گرفته است. بسته بندی ­های هوشمند می­ توانند حاوی یک شناساگر یا نانوحسگر باشند که فرایند تغییر کیفیت محصول بسته ­بندی شده را از طریق مختلفی نظیر: تغییر رنگ، تغییر ولتاژ و... به مصرف کننده گزارش می ­دهند. در همین راستا استفاده از نانوذرّات به دلیل ویژگی ­های منحصربفرد و مناسبی که دارند باعث بهبود عملکرد نانوحسگرها شده ­اند. به همین دلیل در تحقیق حاضر به منظور مطالعه روند رشد پاتوژن‌های غذایی لیستریا مونوسایتوژنز، سالمونلا تیفی موریوم واستافیلوکوکوس اروئوس در محیط کشت از نانوحسگر رنگی تشکیل شده از نانو صفحات گرافن ‏اکسید آمین دار شده به همراه شناساگر برموفنول آبی بر پایه کاغذ صافی استفاده گردید. نتایج نشان داد در ابتدای رشد ‏باکتری  لیستریا مونوسایتوژنز هیچ پرگنه‌ای در محیط کشت مشاهده نشد ولی در نهایت 24 ساعت بعد به تعداد 81/0 ± 189 پرگنه ‏رسید (‏p <0.05‎‏). بررسی تغییرات تعداد پرگنه‌ها در طول 24 ساعت برای باکتری ‏استافیلوکوکوس اروئوس روند افزایشی نشان داده و ‏در انتهای دوره انکوباسیون به تعداد 54/4 ± 196 پرگنه رسید (‏p <0.05‎‏) و هم اینکه تعداد پرگنه‌ها در باکتری‏ سالمونلا تیفی موریوم ‏در محیط کشت مشخص شد که از تعداد صفر به تعداد 17/5 ± 203 تعداد پرگنه رسید (‏p <0.05‎‏). نتایج نشان داد که به طور کلی ‏نانوحسگر ساخته شده، روند افزایشی تعداد پرگنه‌های باکتری‌ها را به صورت تغییر رنگ نشان داده و در این رابطه رنگ ‏نانوحسگرها در تمامی پلیت‌ها از رنگ سبز به رنگ آبی تغییر کردند. در حالی که شدّت تغییر رنگ (‏ΔE‏) ایجاد شده در ‏حضور باکتری‌های مختلف، متفاوت بود و بیشترین شدت تغییر رنگ (‏ΔE‏) در محیط کشت تلقیح شده با باکتری سالمونلا تیفی موریوم‏ با عدد 01/61 مشاهده شد. همبستگی بین شاخص تغییر رنگ (‏ΔE‏) و افزایش تعداد باکتری‌های‏‏ لیستریا مونوسایتوژنز، سالمونلا تیفی موریوم واستافیلوکوکوس اروئوس به ترتیب مثبت 9/0، مثبت 95/0 و مثبت 94/0 بود.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of Listeria Monocytogenes, Salmonella Typhimurium and Staphylococcus Aureus Contamination in Culture ‎Medium by Colorimetric Nanosensor Made from Aminated Graphene Oxide Nanosheets - Bromophenol Blue ‎Indicator

نویسندگان [English]

  • Shahab Naghdi 1
  • Masoud Rezaei 2
  • Nader Bahramifar 3
  • Mehdi &lrm; Alboofetileh 4
1 PhD student, Seafood Processing Department, Marine Sciences Faculty, Tarbiat Modares University, Noor, ‎Iran
2 Professor of, Seafood Processing Department, Marine Sciences Faculty, Tarbiat Modares University, Noor; Iran
3 Associate professor, Environment Department, Marine Sciences Faculty, Tarbiat Modares University; Noor, Iran
4 Associate professor, Inland Aquaculture Research Center, Institute for Fisheries Research, The &lrm;organization of research, Education and &lrm;Extension, Bandar Anzali, Iran
چکیده [English]

Today, the use of intelligent packaging in various packaging industries has received more attention than ever before. Intelligent packages can contain an indicator or nanosensor that reports the process of quality changing of the packaged product to the consumer in various ways such as color change, voltage change, etc. In this regard, the use of nanoparticles due to their unique and useful properties has improved the performance of nanosensors. For this reason, in the present study, growth of food pathogens, Listeria monocytogenesSalmonella typhimurium and Staphylococcus aureus, in culture medium was studied using a colorimetric nanosensor made by aminated graphene oxide nanosheet and bromophenol blue indicator based on Whatman paper. The results showed that at the beginning of experiment no colony was observed for L. monocytogenes however, it reached to 189 ± 0.81 colonies after 24 hours (p <0.05).  Growth of S. aureus showed an increasing trend and it reached to 196 ± 4.54 colonies at the end of the incubation period (p <0.05). The number of S. typhimurium coloniesin the culture medium also increased from 0 to 203 ± 5.17 colonies (p <0.05). The results also showed that the color of prepared nanosensors was changed with increasing the number of bacterial colonies, and in this regard the color of the nanosensors was changed from green to blue in all plates. However, the intensity of color difference (ΔE) was different in the presence of different bacteria and the highest ΔE (61.01) was observed in the medium inoculated with S. typhimurium. Correlation between ΔE and increasing the number of L. monocytogenes, S. typhimurium and S. aureus was positive 0.9, positive 0.95 and positive 0.94, respectively.

کلیدواژه‌ها [English]

  • Listeria monocytogenes
  • Salmonella ‎‎typhimurium‏
  • Staphylococcus aureus‏
  • colorimetric nanosensor
  • Aminated graphene oxide nanosheets
1. Alboofetileh, M., Rezaei, M., Tabarsa, M., Rittà, M., Donalisio, M., Mariatti, F., ... & Cravotto, G. (2019). Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. International journal of biological macromolecules, 124, 131-137.
2. Alhogail, S., Suaifan, G. A., & Zourob, M. (2016). Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosensors and Bioelectronics, 86, 1061-1066.
3. Basu, P. K., Indukuri, D., Keshavan, S., Navratna, V., Vanjari, S. R. K., Raghavan, S., & Bhat, N. (2014). Graphene based E. coli sensor on flexible acetate sheet. Sensors and Actuators B: Chemical, 190, 342-347.
4. Bumbudsanpharoke, N., & Ko, S. (2019). Nanomaterial-based optical indicators: promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Research, 12(3), 489-500.
5. Chen, Q., Li, H., Ouyang, Q., & Zhao, J. (2014). Identification of spoilage bacteria using a simple colorimetric sensor array. Sensors and Actuators B: Chemical, 205, 1-8.
6. Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1), 1-24.
7. Guo, R., Wang, S., Huang, F., Chen, Q., Li, Y., Liao, M., & Lin, J. (2019). Rapid detection of Salmonella Typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplification and smartphone image analysis. Sensors and Actuators B: Chemical, 284, 134-139.
8. Huang, J., Sun, J., Warden, A. R., & Ding, X. (2020). Colorimetric and photographic detection of bacteria in drinking water by using 4-mercaptophenylboronic acid functionalized AuNPs. Food Control, 108, 106885.
9. Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
10. Ko, Y., Jeong, H. Y., Kwon, G., Kim, D., Lee, C., & You, J. (2020).pH-responsive polyaniline /polyethylene glycol composite arrays for colorimetric sensor application. Sensors and Actuators B: Chemical, 305, 127447.
11. Kuswandi, B., Maryska, C., Abdullah, A., & Heng, L. Y. (2013). Real time on-package freshness indicator for guavas packaging. Journal of Food Measurement and Characterization, 7 (1), 29-39.
12. Lim, S. H., Mix, S., Xu, Z., Taba, B., Budvytiene, I., Berliner, A. N., ... & Martino, R. A. (2014). Colorimetric sensor array allows fast detection and simultaneous identification of sepsis-causing bacteria in spiked blood culture. Journal of clinical microbiology, 52(2), 592-598.
13. Alaie, M. M., Jahangiri, M., Rashidi, A. M., Asl, A. H., & Izadi, N. (2015). A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide. Journal of Industrial and Engineering Chemistry, 29, 97-103.
14. Carey, J. R., Suslick, K. S., Hulkower, K. I., Imlay, J. A., Imlay, K. R., Ingison, C. K., ... & Wittrig, A. E. (2011). Rapid identification of bacteria with a disposable colorimetric sensing array. Journal of the American Chemical Society, 133(19), 7571-7576.
15. Roh, S. G., Robby, A. I., Phuong, P. T. M., In, I., & Park, S. Y. (2019). Photoluminescence- tunable fluorescent carbon dots-deposited silver nanoparticle for detection and killing of bacteria.Materials Science and Engineering: C, 97, 613-623.
16. Romick, T. L., Fleming, H. P., & McFeeters, R. F. (1996). Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium. Applied and environmental microbiology, 62(1), 304-307.
17. Shin, G. J., Rhee, K., & Park, S. J. (2016). Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. International Journal of Hydrogen Energy, 41(32), 14351-14359.
18. Su, H., Zhao, H., Qiao, F., Chen, L., Duan, R., & Ai, S. (2013). Colorimetric detection of Escherichia coli O157: H7 using functionalized Au@ Pt nanoparticles as peroxidase mimetics.Analyst, 138(10), 3026-3031.
19. Shabani, A. M. H., Dadfarnia, S., & Dehghani, Z. (2009). On-line solid phase extraction system using 1, 10-phenanthroline immobilized on surfactant coated alumina for the flame atomic absorption spectrometric determination of copper and cadmium.Talanta, 79(4), 1066-1070.
20. Sung, Y. J., Suk, H. J., Sung, H. Y., Li, T., Poo, H., & Kim, M. G. (2013). Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosensors and Bioelectronics, 43, 432-439.
21. Valentini, F., Carbone, M., & Palleschi, G. (2013). Graphene oxide nanoribbons (GNO), reduced graphene nanoribbons (GNR), and multi-layers of oxidized graphene functionalized with ionic liquids (GO–IL) for assembly of miniaturized electrochemical devices. Analytical and bioanalytical chemistry, 405(11), 3449-3474.
22. Wilson, D., Materón, E. M., Ibáñez-Redín, G., Faria, R. C., Correa, D. S., & Oliveira Jr, O. N. (2019). Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides. Talanta, 194, 611-618.
23. Yavari, F., Chen, Z., Thomas, A. V., Ren, W., Cheng, H. M., & Koratkar, N. (2011). High sensitivity gas detection using a macroscopic three-dimensional graphene foam network.Scientific reports, 1(1), 1-5.
24. Zawisza, B., Baranik, A., Malicka, E., Talik, E., & Sitko, R. (2016). Preconcentration of Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) with ethylenediamine-modified graphene oxide.Microchimica Acta, 183(1), 231-240.
25. Zhao, Y., Ding, H., & Zhong, Q. (2012). Preparation and characterization of aminated graphite oxide for CO2 capture.Applied Surface Science, 258(10), 4301-4307.
26. Allardyce, R. A., Langford, V. S., Hill, A. L., & Murdoch, D. R. (2006). Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS).” Journal of microbiological methods, 65(2), 361-365.