انواع تکنیک‌های اصلاح کردن پلاستیک‌های زیست تخریب‌پذیر مبتنی بر نشاسته

نوع مقاله : مروری

نویسندگان

1 استاد، گروه علوم و صنایع غذایی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشجوی دکتری، گروه علوم و صنایع غذایی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

نشاسته مهم‌ترین پلی‌ساکاریدی است که به‌طور گسترده برای تهیه‌ فیلم‌های زیست تخریب‌پذیر استفاده می‌شود. فیلم‌های مبتنی بر نشاسته انعطاف‌پذیر و قوی هستند، اما گروه‌های هیدروکسیل آزاد در ساختار نشاسته، فیلم‌ها را آب‌دوست می‌کند و بخاطر استحکام مکانیکی و کششی پایین، کاربرد نشاسته را در صنعت بسته‌بندی محدود می‌کند. هدف از این بررسی راه‌های بهبود خواص فیلم‌های تشکیل شده از نشاسته است. بطور کلی با استفاده از تکنیک‌های اصلاح از جمله استفاده از نرم‌کننده‌ها، کوپلیمرها، نانوکامپوزیت‌ها و ترکیب با سایر بیوپلیمر‌ها میتوان خصوصیات میکانیکی فیلم‌های نشاسته را بهبود بخشید. یا با اصلاح ساختار خود نشاسته به­روش شیمیایی (اتصالات عرضی، استری کردن و اکسیدکردن) خصوصیات عملکردی نشاسته را تغییر داد تا منجر به بهبود فیلم‌های تهیه شده از آن، از جمله کاهش جذب رطوبت، نفوذپذیری به بخار آب، پایداری حرارتی، افزایش آبگریزی و ... شود. اخیرا از فرآیند‌های غیر حرارتی مخصوصا پلاسمای سرد برای بهبود فیلم‌های نشاسته استفاده شده است که نتایج قابل قبولی را ارائه داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Types of Techniques for Modifying Starch-Based Biodegradable Plastics

نویسندگان [English]

  • N. Sedaghat 1
  • Ali Ebrahimzadeh 2
1 ferdosi mashhah
2 Food Industry, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
چکیده [English]

The growing concerns about wasting natural resources and the increasing enviromental issues in the world due to the usage of petro-based materials, have led to the advent of bio-degeradable material usage for food packaging.Starch is one the most important polysaccharides which has been widely used for bio-degeradable-film production. the starch-based films are flexible and strong, but the presence of free hydroxyl groups in starch structure, is the reasonf for these films to be hydrophil and due to reduced mechanical strenght and low elasticity is limiting the usage of starch in packaging industries.The purpose of this study is to find ways to improve the properties of films composed of starch. In general, modification techniques, including plastic softners, co-polymers, nano-composites and mixing with other bio-polymers it is possible to modify the functional properties of starch to obtain better films from it. some of these favorable properties are: reducing moisture absorption, water vapour permiability, heat stability, increasing the hydrophobicity, etc. recently,   Non-thermal processes specially cold-plasma have been used for modifying the starch films with good results.

کلیدواژه‌ها [English]

  • Plasticizer
  • Co-Polymer
  • Nanocomposites
  • Chemical Modification
  • Non-Thermal Modification
  • J. Risch, ‘Food Packaging History and Innovations’, J. Agric. Food Chem., vol. 57, no. 18, pp. 8089–8092, 2009, doi: 10.1021/jf900040r.
  • Agarwal, ‘Major factors affecting the characteristics of starch based biopolymer films’, Eur. Polym. J., vol. 160, no. August, p. 110788, 2021, doi: 10.1016/j.eurpolymj.2021.110788.
  • de Kock, Z. Sadan, R. Arp, and P. Upadhyaya, ‘A circular economy response to plastic pollution: Current policy landscape and consumer perception’, S. Afr. J. Sci., vol. 116, no. 5–6, pp. 5–6, 2020, doi: 10.17159/sajs.2020/8097.
  • Schwarzböck, E. Van Eygen, H. Rechberger, and J. Fellner, ‘Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities’, Waste Manag. Res., vol. 35, no. 2, pp. 207–216, 2017, doi: 10.1177/0734242X16660372.
  • Moeini, N. Germann, M. Malinconico, and G. Santagata, ‘Formulation of secondary compounds as additives of biopolymer-based food packaging: A review’, Trends Food Sci. Technol., vol. 114, no. June, pp. 342–354, 2021, doi: 10.1016/j.tifs.2021.05.040.
  • A. Al-Tayyar, A. M. Youssef, and R. Al-hindi, ‘Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review’, Food Chem., vol. 310, p. 125915, 2020, doi: 10.1016/j.foodchem.2019.125915.
  • F. Hosseini, M. Rezaei, M. Zandi, and F. Farahmandghavi, ‘Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles’, Food Hydrocoll., vol. 44, pp. 172–182, 2015, doi: 10.1016/j.foodhyd.2014.09.004.
  • E. V. Hormaiztegui, B. Daga, M. I. Aranguren, and V. Mucci, ‘Bio-based waterborne polyurethanes reinforced with cellulose nanocrystals as coating films’, Prog. Org. Coatings, vol. 144, no. February, p. 105649, 2020, doi: 10.1016/j.porgcoat.2020.105649.
  • Dehnad, Z. Emam-Djomeh, H. Mirzaei, S. M. Jafari, and S. Dadashi, ‘Optimization of physical and mechanical properties for chitosan- nanocellulose biocomposites’, Carbohydr. Polym., vol. 105, no. 1, pp. 222–228, 2014, doi: 10.1016/j.carbpol.2014.01.094.
  • Salerno, G. Cesarelli, P. Pedram, and P. A. Netti, ‘Modular strategies to build cell-free and cell-laden scaffolds towards bioengineered tissues and organs’, J. Clin. Med., vol. 8, no. 11, 2019, doi: 10.3390/jcm8111816.
  • M. Guerreiro, D. N. de Oliveira, C. F. O. R. Melo, E. de Oliveira Lima, and R. R. Catharino, ‘Migration from plastic packaging into meat’, Food Res. Int., vol. 109, pp. 320–324, 2018, doi: 10.1016/j.foodres.2018.04.026.
  • Tajik, Y. Maghsoudlou, F. Khodaiyan, S. M. Jafari, M. Ghasemlou, and M. Aalami, ‘Soluble soybean polysaccharide: A new carbohydrate to make a biodegradable film for sustainable green packaging’, Carbohydr. Polym., vol. 97, no. 2, pp. 817–824, 2013, doi: 10.1016/j.carbpol.2013.05.037.
  • Ghanbarzadeh and A. R. Oromiehi, ‘Biodegradable biocomposite films based on whey protein and zein: Barrier, mechanical properties and AFM analysis’, Int. J. Biol. Macromol., vol. 43, no. 2, pp. 209–215, 2008, doi: 10.1016/j.ijbiomac.2008.05.006.
  • C. Martins and V. G. Martins, ‘Effect of Rice Starch Hydrolysis and Esterification Processes on the Physicochemical Properties of Biodegradable Films’, Starch/Staerke, vol. 73, no. 9–10, pp. 1–8, 2021, doi: 10.1002/star.202100022.
  • C. Saraiva Rodrigues, A. S. da Silva, L. H. de Carvalho, T. S. Alves, and R. Barbosa, ‘Morphological, structural, thermal properties of a native starch obtained from babassu mesocarp for food packaging application’, J. Mater. Res. Technol., vol. 9, no. 6, pp. 15670–15678, 2020, doi: 10.1016/j.jmrt.2020.11.030.
  • Menzel, ‘Improvement of starch films for food packaging through a three-principle approach: Antioxidants, cross-linking and reinforcement’, Carbohydr. Polym., vol. 250, no. March, p. 116828, 2020, doi: 10.1016/j.carbpol.2020.116828.
  • Punia, ‘Barley starch modifications: Physical, chemical and enzymatic - A review’, Int. J. Biol. Macromol., vol. 144, pp. 578–585, 2020, doi: 10.1016/j.ijbiomac.2019.12.088.
  • W. Wang et al., ‘Mechanical retention and waterproof properties of bacterial cellulose-reinforced thermoplastic starch biocomposites modified with sodium hexametaphosphate’, Materials (Basel)., vol. 8, no. 6, pp. 3168–3194, 2015, doi: 10.3390/ma8063168.
  • Tyagi and B. Bhattacharya, ‘Role of plasticizers in bioplastics’, MOJ Food Process. Technol., vol. 7, no. 4, pp. 128–130, 2019, doi: 10.15406/mojfpt.2019.07.00231.
  • Y. Kim, J. lin Jane, and B. Lamsal, ‘Hydroxypropylation improves film properties of high amylose corn starch’, Ind. Crops Prod., vol. 95, pp. 175–183, 2017, doi: 10.1016/j.indcrop.2016.10.025.
  • Yu and G. Christie, ‘Microstructure and mechanical properties of orientated thermoplastic starches’, J. Mater. Sci., vol. 40, no. 1, pp. 111–116, 2005, doi: 10.1007/s10853-005-5694-1.
  • L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, ‘Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch’, Polymers (Basel)., vol. 7, no. 6, pp. 1106–1124, 2015, doi: 10.3390/polym7061106.
  • D. Hazrol, S. M. Sapuan, E. S. Zainudin, M. Y. M. Zuhri, and N. I. A. Wahab, ‘Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol’, Polymers (Basel)., vol. 13, no. 2, pp. 1–22, 2021, doi: 10.3390/polym13020242.
  • Sapper, P. Talens, and A. Chiralt, ‘Improving Functional Properties of Cassava Starch-Based Films by Incorporating Xanthan , Gellan , or Pullulan Gums’, vol. 2019, no. 6, pp. 1–9, 2019.
  • Abral, A. S. Anugrah, F. Hafizulhaq, E. Sugiarti, and A. N. Muslimin, ‘AC PT Faculty of Pharmacy’, no. 2017, p. #pagerange#, 2018, doi: 10.1016/j.ijbiomac.2018.05.067.
  • Abral et al., ‘Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers / Starch / Chitosan for a Food Packaging Alternative’, vol. 2021, 2021.
  • Niu et al., ‘Preparation and Characterization of Biodegradable Composited Films Based on Potato Starch/Glycerol/Gelatin’, J. Food Qual., vol. 2021, 2021, doi: 10.1155/2021/6633711.
  • Zuo, X. Song, F. Chen, and Z. Shen, ‘Physical and structural characterization of edible bilayer films made with zein and corn-wheat starch’, J. Saudi Soc. Agric. Sci., vol. 18, no. 3, pp. 324–331, 2019, doi: https://doi.org/10.1016/j.jssas.2017.09.005.
  • Cortés-Rodríguez, C. Villegas-Yépez, J. H. Gil González, P. E. Rodríguez, and R. Ortega-Toro, ‘Development and evaluation of edible films based on cassava starch, whey protein, and bees wax’, Heliyon, vol. 6, no. 9, 2020, doi: 10.1016/j.heliyon.2020.e04884.
  • A. Silva et al., ‘Synthesis and characterization of a low solubility edible film based on native cassava starch’, Int. J. Biol. Macromol., vol. 128, pp. 290–296, 2019, doi: 10.1016/j.ijbiomac.2019.01.132.
  • O. Oluwasina, B. P. Akinyele, S. J. Olusegun, O. O. Oluwasina, and N. D. S. Mohallem, ‘Evaluation of the effects of additives on the properties of starch-based bioplastic film’, SN Appl. Sci., vol. 3, no. 4, pp. 1–12, 2021, doi: 10.1007/s42452-021-04433-7.
  • K. Marichelvam, M. Jawaid, and M. Asim, ‘Corn and rice starch-based bio-plastics as alternative packaging materials’, Fibers, vol. 7, no. 4, pp. 1–14, 2019, doi: 10.3390/fib7040032.
  • H. Othman, ‘Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler’, Agric. Agric. Sci. Procedia, vol. 2, pp. 296–303, 2014, doi: 10.1016/j.aaspro.2014.11.042.
  • Sun, Starch Nanoparticles. Elsevier Ltd, 2018.
  • C. Martins, J. M. Latorres, and V. G. Martins, ‘Impact of starch nanocrystals on the physicochemical, thermal and structural characteristics of starch-based films’, Lwt, vol. 156, p. 113041, 2021, doi: 10.1016/j.lwt.2021.113041.
  • Dai, J. Zhang, and F. Cheng, ‘Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films’, Int. J. Biol. Macromol., vol. 132, pp. 897–905, 2019, doi: 10.1016/j.ijbiomac.2019.03.197.
  • Garavand, M. Rouhi, S. H. Razavi, I. Cacciotti, and R. Mohammadi, ‘Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review’, Int. J. Biol. Macromol., vol. 104, pp. 687–707, 2017, doi: 10.1016/j.ijbiomac.2017.06.093.
  • Benavides, R. Villalobos-Carvajal, and J. E. Reyes, ‘Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration’, J. Food Eng., vol. 110, no. 2, pp. 232–239, 2012, doi: 10.1016/j.jfoodeng.2011.05.023.
  • Reddy, Q. Jiang, and Y. Yang, ‘Preparation and properties of peanut protein films crosslinked with citric acid’, Ind. Crops Prod., vol. 39, no. 1, pp. 26–30, 2012, doi: 10.1016/j.indcrop.2012.02.004.
  • Bhat and A. A. Karim, ‘Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents’, J. Food Sci. Technol., vol. 51, no. 7, pp. 1326–1333, 2014, doi: 10.1007/s13197-012-0652-9.
  • A. De Carvalho and C. R. F. Grosso, ‘Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde’, Food Hydrocoll., vol. 18, no. 5, pp. 717–726, 2004, doi: 10.1016/j.foodhyd.2003.10.005.
  • Mu, J. Guo, X. Li, W. Lin, and D. Li, ‘Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films’, Food Hydrocoll., vol. 27, no. 1, pp. 22–29, 2012, doi: 10.1016/j.foodhyd.2011.09.005.
  • Cao, Y. Fu, and J. He, ‘Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid’, Food Hydrocoll., vol. 21, no. 4, pp. 575–584, 2007, doi: 10.1016/j.foodhyd.2006.07.001.
  • Galietta, L. Di Gioia, S. Guilbert, and B. Cuq, ‘Mechanical and Thermomechanical Properties of Films Based on Whey Proteins as Affected by Plasticizer and Crosslinking Agents’, J. Dairy Sci., vol. 81, no. 12, pp. 3123–3130, 1998, doi: 10.3168/jds.S0022-0302(98)75877-1.
  • Chaiwong and K. Leelapornpisid, Pimporn Jantanasakulwong, ‘Antioxidant and Moisturizing Properties of’, Polymer (Guildf)., vol. 12, no. 7, p. 1445, 2020.
  • Sornsumdaeng, P. Seeharaj, and J. Prachayawarakorn, ‘Property improvement of biodegradable citric acid-crosslinked rice starch films by calcium oxide’, Int. J. Biol. Macromol., vol. 193, no. PA, pp. 748–757, 2021, doi: 10.1016/j.ijbiomac.2021.10.157.
  • Reddy and Y. Yang, ‘Citric acid cross-linking of starch films’, Food Chem., vol. 118, no. 3, pp. 702–711, 2010, doi: 10.1016/j.foodchem.2009.05.050.
  • Wu et al., Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films, vol. 97. Elsevier Ltd, 2019.
  • L. M. El Halal et al., ‘Structure, morphology and functionality of acetylated and oxidised barley starches’, Food Chem., vol. 168, pp. 247–256, 2015, doi: 10.1016/j.foodchem.2014.07.046.
  • Wang et al., Research advances in chemical modifications of starch for hydrophobicity and its applications: A review, vol. 240. Elsevier Ltd., 2020.
  • Ren, M. Jiang, J. Tong, X. Bai, X. Dong, and J. Zhou, ‘Influence of surface esterification with alkenyl succinic anhydrides on mechanical properties of corn starch films’, Carbohydr. Polym., vol. 82, no. 3, pp. 1010–1013, 2010, doi: 10.1016/j.carbpol.2010.05.041.
  • P. Bangar, W. S. Whiteside, A. O. Ashogbon, and M. Kumar, ‘Recent advances in thermoplastic starches for food packaging: A review’, Food Packag. Shelf Life, vol. 30, no. August, p. 100743, 2021, doi: 10.1016/j.fpsl.2021.100743.
  • L. Vanier, S. L. M. El Halal, A. R. G. Dias, and E. da Rosa Zavareze, ‘Molecular structure, functionality and applications of oxidized starches: A review’, Food Chem., vol. 221, pp. 1546–1559, 2017, doi: 10.1016/j.foodchem.2016.10.138.
  • Gao et al., ‘Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin’, Food Hydrocoll., vol. 110, p. 106209, 2021, doi: 10.1016/j.foodhyd.2020.106209.
  • Zahoranová et al., ‘Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation’, Plasma Chem. Plasma Process., vol. 38, no. 5, pp. 969–988, 2018, doi: 10.1007/s11090-018-9913-3.
  • Guo et al., ‘Supramolecular structure and pasting/digestion behaviors of rice starches following concurrent microwave and heat moisture treatment’, Int. J. Biol. Macromol., vol. 135, pp. 437–444, 2019, doi: 10.1016/j.ijbiomac.2019.05.189.
  • Beikzadeh, M. Ghorbani, N. Shahbazi, F. Izadi, Z. Pilevar, and A. M. Mortazavian, ‘The Effects of Novel Thermal and Nonthermal Technologies on the Properties of Edible Food Packaging’, Food Eng. Rev., vol. 12, no. 3, pp. 333–345, 2020, doi: 10.1007/s12393-020-09227-y.
  • L. Goiana et al., ‘Corn starch based films treated by dielectric barrier discharge plasma’, Int. J. Biol. Macromol., vol. 183, no. May, pp. 2009–2016, 2021, doi: 10.1016/j.ijbiomac.2021.05.210.
  • Guo, Q. Gou, L. Yang, Q. li Yu, and L. Han, ‘Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films’, Food Chem., vol. 370, no. August 2021, p. 130992, 2022, doi: 10.1016/j.foodchem.2021.130992.