[1] M. Soltani Firouz, K. Mohi-Alden, and M. Omid, “A critical review on intelligent and active packaging in the food industry: Research and development,” Food Res. Int., vol. 141, no. July 2020, p. 110113, 2021, doi: 10.1016/j.foodres.2021.110113.
[2] M. Selvamuthukumaran, Active Packaging for Various Food Applications, Illustrate., vol. 214 pages. CRC Press, 2021, 2021.
[3] S. Yildirim et al., “Active Packaging Applications for Food,” Compr. Rev. Food Sci. Food Saf., vol. 17, no. 1, pp. 165–199, 2018, doi: 10.1111/1541-4337.12322.
[4] A. K. Singh, D. Ramakanth, A. Kumar, Y. S. Lee, and K. K. Gaikwad, “Active packaging technologies for clean label food products: a review,” J. Food Meas. Charact., vol. 15, no. 5, pp. 4314–4324, 2021, doi: 10.1007/s11694-021-01024-3.
[5] A. Bhardwaj, T. Alam, and N. Talwar, “Recent Advances in Active Packaging of Agri-food Products : a Review,” 2019. [Online]. Available: http://www.jpht.info
[6] K. Vinay Pramod Kumar, J. W. Suneetha, C. K. Vinay Pramod Kumar, and B. Anila Kumari, “Active packaging systems in food packaging for enhanced shelf life,” ~ 2044 ~ J. Pharmacogn. Phytochem., vol. 7, no. 6, pp. 2044–2046, 2018.
[7] M. W. Ahmed et al., “A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges,” Food Packag. Shelf Life, vol. 33, no. July, p. 100913, 2022, doi: 10.1016/j.fpsl.2022.100913.
[8] A. Dey and S. Neogi, “Oxygen scavengers for food packaging applications: A review,” Trends Food Sci. Technol., vol. 90, no. August 2018, pp. 26–34, 2019, doi: 10.1016/j.tifs.2019.05.013.
[9] K. Sadeghi, Y. Lee, and J. Seo, “Ethylene Scavenging Systems in Packaging of Fresh Produce: A Review,” Food Rev. Int., vol. 37, no. 2, pp. 155–176, 2021, doi: 10.1080/87559129.2019.1695836.
[10] M. Qian et al., “Trends in Food Science & Technology A review of active packaging in bakery products : Applications and future trends,” Trends Food Sci. Technol., vol. 114, no. May, pp. 459–471, 2021, doi: 10.1016/j.tifs.2021.06.009.
[11] G. Rux et al., “Humidity-Regulating Trays : Moisture Absorption Kinetics and Applications for Fresh Produce Packaging,” no. Ivv, 2016, doi: 10.1007/s11947-015-1671-0.
[12] D. S. Lee, H. J. Wang, C. Jaisan, and D. S. An, “Active food packaging to control carbon dioxide,” Packag. Technol. Sci., vol. 35, no. 3, pp. 213–227, 2022, doi: 10.1002/pts.2627.
[13] M. T. Awulachew, “International Journal of Health Policy and Planning,” vol. 1, no. 1, pp. 28–35, 2022.
[14] B. Kuswandi and Jumina, Active and intelligent packaging, safety, and quality controls. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-816184-5.00012-4.
[15] B. Demirhan and K. Candoǧan, “Active packaging of chicken meats with modified atmosphere including oxygen scavengers,” Poult. Sci., vol. 96, no. 5, pp. 1394–1401, 2017, doi: 10.3382/ps/pew373.
[16] E. Kütahneci and Z. Ayhan, “Applications of different oxygen scavenging systems as an active packaging to improve freshness and shelf life of sliced bread,” J. fur Verbraucherschutz und Leb., vol. 16, no. 3, pp. 247–259, 2021, doi: 10.1007/s00003-021-01331-3.
[17] Z. Kordjazi and A. Ajji, “Oxygen scavenging systems for food packaging applications: A review,” Can. J. Chem. Eng., vol. 100, no. 12, pp. 3444–3449, 2022, doi: 10.1002/cjce.24539.
[18] A. S. Modaresi and R. Niazmand, “Characterization of Oxygen Scavenger Film Based on Sodium Ascorbate: Extending the Shelf Life of Peanuts,” Food Bioprocess Technol., vol. 14, no. 6, pp. 1184–1193, 2021, doi: 10.1007/s11947-021-02631-0.
[19] J. S. Lee, Y. Chang, E. S. Lee, H. G. Song, P. S. Chang, and J. Han, “Ascorbic Acid-Based Oxygen Scavenger in Active Food Packaging System for Raw Meatloaf,” J. Food Sci., vol. 83, no. 3, pp. 682–688, 2018, doi: 10.1111/1750-3841.14061.
[20] N. Faas, B. Röcker, S. Smrke, C. Yeretzian, and S. Yildirim, “Prevention of lipid oxidation in linseed oil using a palladium-based oxygen scavenging film,” Food Packag. Shelf Life, vol. 24, no. February, p. 100488, 2020, doi: 10.1016/j.fpsl.2020.100488.
[21] N. Pathak, O. J. Caleb, M. Geyer, W. B. Herppich, C. Rauh, and P. V. Mahajan, “Photocatalytic and Photochemical Oxidation of Ethylene: Potential for Storage of Fresh Produce—a Review,” Food Bioprocess Technol., vol. 10, no. 6, pp. 982–1001, 2017, doi: 10.1007/s11947-017-1889-0.
[22] K. K. Gaikwad, S. Singh, and Y. S. Negi, “Ethylene scavengers for active packaging of fresh food produce,” Environ. Chem. Lett., vol. 18, no. 2, pp. 269–284, 2020, doi: 10.1007/s10311-019-00938-1.
[23] H. Wei, F. Seidi, T. Zhang, Y. Jin, and H. Xiao, “Ethylene scavengers for the preservation of fruits and vegetables: A review,” Food Chem., vol. 337, no. February 2020, p. 127750, 2021, doi: 10.1016/j.foodchem.2020.127750.
[24] J. de Bruijn, A. E. Gómez, P. Melín, C. Loyola, V. A. Solar, and H. Valdés, “Effect of doping natural zeolite with copper and zinc cations on ethylene removal and postharvest tomato fruit quality,” Chem. Eng. Trans., vol. 75, no. September 2018, pp. 265–270, 2019, doi: 10.3303/CET1975045.
[25] B. W. Böhmer-Maas, L. M. Fonseca, D. M. Otero, E. da Rosa Zavareze, and R. C. Zambiazi, “Photocatalytic zein-TiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes,” Food Packag. Shelf Life, vol. 24, no. January, 2020, doi: 10.1016/j.fpsl.2020.100508.
[26] A. Ebrahimi et al., “Novel strategies to control ethylene in fruit and vegetables for extending their shelf life: A review,” Int. J. Environ. Sci. Technol., vol. 19, no. 5, pp. 4599–4610, 2022, doi: 10.1007/s13762-021-03485-x.
[27] M. H. Álvarez-Hernández, G. B. Martínez-Hernández, N. Castillejo, J. A. Martínez, and F. Artés-Hernández, “Development of an antifungal active packaging containing thymol and an ethylene scavenger. Validation during storage of cherry tomatoes,” Food Packag. Shelf Life, vol. 29, no. March, 2021, doi: 10.1016/j.fpsl.2021.100734.
[28] E. Warsiki, “Application of chitosan as biomaterial for active packaging of ethylene absorber,” IOP Conf. Ser. Earth Environ. Sci., vol. 141, no. 1, 2018, doi: 10.1088/1755-1315/141/1/012036.
[29] G. G. Bovi, O. J. Caleb, E. Klaus, F. Tintchev, C. Rauh, and P. V. Mahajan, “Moisture absorption kinetics of FruitPad for packaging of fresh strawberry,” J. Food Eng., vol. 223, pp. 248–254, 2018, doi: 10.1016/j.jfoodeng.2017.10.012.
[30] K. K. Gaikwad, S. Singh, and A. Ajji, “Moisture absorbers for food packaging applications,” Environ. Chem. Lett., vol. 17, no. 2, pp. 609–628, 2019, doi: 10.1007/s10311-018-0810-z.
[31] C. W. Chen et al., “Development of moisture-absorbing and antioxidant active packaging film based on poly(vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel,” J. Food Process. Preserv., vol. 42, no. 1, pp. 1–11, 2018, doi: 10.1111/jfpp.13374.
[32] S. B. Murmu and H. N. Mishra, “Selection of the best active modified atmosphere packaging with ethylene and moisture scavengers to maintain quality of guava during low-temperature storage,” Food Chem., vol. 253, no. January, pp. 55–62, 2018, doi: 10.1016/j.foodchem.2018.01.134.
[33] S. M. Hertrich and B. A. Niemira, Advanced Processing Techniques for Extending the Shelf Life of Foods. 2021. doi: 10.1007/978-3-030-54375-4_5.
[34] H. G. Lee, S. Jeong, and S. R. Yoo, “Development of food packaging materials containing calcium hydroxide and porous medium with carbon dioxide-adsorptive function,” Food Packag. Shelf Life, vol. 21, no. February, p. 100352, 2019, doi: 10.1016/j.fpsl.2019.100352.
[35] H. G. Lee, C. H. Cho, H. K. Kim, and S. R. Yoo, “Improved physical and mechanical properties of food packaging films containing calcium hydroxide as a CO2 adsorbent by stearic acid addition,” Food Packag. Shelf Life, vol. 26, no. March, p. 100558, 2020, doi: 10.1016/j.fpsl.2020.100558.
[36] H. J. Wang, D. S. An, J. W. Rhim, and D. S. Lee, “Shiitake mushroom packages tuned in active CO2 and moisture absorption requirements,” Food Packag. Shelf Life, vol. 11, pp. 10–15, 2017, doi: 10.1016/j.fpsl.2016.11.002.
[37] J. Han, L. Zhang, B. Zhao, L. Qin, Y. Wang, and F. Xing, “The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption,” Ind. Crops Prod., vol. 128, no. October 2018, pp. 290–297, 2019, doi: 10.1016/j.indcrop.2018.11.028.
[38] J. Shin, E. J. Lee, and D. U. Ahn, “Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds,” Food Packag. Shelf Life, vol. 18, no. October, pp. 107–114, 2018, doi: 10.1016/j.fpsl.2018.10.005.
[39] X. Yang, F. Yang, Y. Liu, J. Li, and H. Song, “Off-flavor removal from thermal-treated watermelon juice by adsorbent treatment with β-cyclodextrin, xanthan gum, carboxymethyl cellulose sodium, and sugar/acid,” Lwt, vol. 131, no. January, p. 109775, 2020, doi: 10.1016/j.lwt.2020.109775.
[40] B. Ghorani, R. Kadkhodaee, G. Rajabzadeh, and N. Tucker, “Assembly of odour adsorbent nanofilters by incorporating cyclodextrin molecules into electrospun cellulose acetate webs,” React. Funct. Polym., vol. 134, no. September 2018, pp. 121–132, 2019, doi: 10.1016/j.reactfunctpolym.2018.11.014.