کاربرد نانوکریستال های سلولزی در فیلم های بسته بندی مواد غذایی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشجوی دکتری تخصصی بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه چمران اهواز

چکیده

کلمه " نانوسلولز" عموماً به مواد سلولزی با ابعادی در محدوده نانومتری اشاره دارد. بر اساس ابعاد، عملکرد و روش­های آماده­سازی، نانوسلولزها به سه زیر شاخه اصلی طبقه­بندی می­شوند  که عبارتند از: سلولز نانوکریستال، سلولز میکرو فیبریله شده و نانو سلولزهای باکتریایی. مطالعات نشان می­دهند که با استفاده از مواد خام ارزان قیمت و قابل تجدید، امکان تولید پوشش­هایی با کارایی بالا برای مواد معمول بسته­بندی، از مواد خام ارزان قیمت و قابل تجدید وجود دارد. سلولز نانوکریستال­ها، که به راحتی از چوب سخت حاصل می­شوند، قادر هستند در قالب یک پوشش نازک روی فیلم­ها، به میزان قابل ملاحظه­ای مانع دی اکسید کربن و اکسیژن شوند. با وجود این مزایا، ویژگی­های جالبی مثل ویژگی­ های مکانیکی و نوری نیز از آن­ها شناخته شده است که می­توانند به صورت فعالیت­ های مختلف مانند مواد آنتی­اکسیدانی یا ضد­میکروبی به مواد بسته­بندی اضافه شوند و در موارد خاصی نیز در تولید پوشش­های فیلم پلاستیکی به کار روند.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Cellulosic Nano Crystals in Food Packaging Films

نویسنده [English]

  • Azadeh Rashidimehr
PhD student, Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Iran
چکیده [English]

The term “Nano cellulose” generally refers to cellulosic material in the nanometer dimensions. Based on dimensions, performance and preparation methods, Nano celluloses are classified into three main groups: Nano crystalline cellulose (NCC), micro fibrillated cellulose (MFC) and bacterial Nano cellulose (BNC). Studies show that with the use of cheap and renewable raw materials, it is possible to produce high-performance coatings for common packaging materials. NCCs, which is easily obtained from hardwood, are capable of significantly inhibiting carbon dioxide and oxygen in the form of a thin coating on the films. Despite these advantages, interesting features such as mechanical and optical properties are also known that can be added to various packaging materials, such as antioxidant or antimicrobial agents. In certain cases, it has been used in the production of plastic film coatings.

کلیدواژه‌ها [English]

  • Nanocrystal
  • Cellulose
  • Packaging
1. Keijsers ERP, Yılmaz G, van Dam JEG. (2013). “he cellulose resource matrix.” Carbohydrate Polymers, 93(1): 9–21.
2. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Younblood, J. (2011). “Cellulose nanomaterials review: Structure properties and nanocomposites.” Chemical Society Reviews, 40, 3941–3994.
3. Nashar DEE, Abd-El-Messieh SL, Basta AH. )2004 .(“Newsprint paper waste as a fiber reinforcement in rubber composites.” Journal of Applied Polymer Science; 91(5): 3410–3420.
4. Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J. M., Clark, D. S., & Blanch, H. W. (2011). “Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle.” Biotechnology and Bioengineering, 108(3), 511-520.
5. Eichhorn SJ, Dufresne A, Aranguren M et al. (2010). “Review: current international research into cellulose nanofibres and nanocomposites.” Journal of Materials Science, 45(1), 1–33.
6. Habibi Y, Lucia LA, Rojas OJ. “Cellulose nanocrystals: chemistry, self-assembly, and applications.” Chemical Reviews 2010; 110(6): 3479–3500.
7. Maya Jacob, J., & Sabu, T. (2008). “Biofibres and biocomposites.” Carbohydrate Polymers, 71, 343–364.
8. Hamad, W. (2006). “On the development and applications of cellulosic nanofibrillar and nanocrystalline materials.” The Canadian Journal of Chemical Engineering, 84, 513–519.
9. Hubbe, M. A. (2006). “Does production of the world’s highest-tonnage manufactured item often involve nanotechnology?” Nanotech Perceptions, 2, 263–266.
10. Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). “Cellulosic nanocomposites: A review.” Bioresources, 3, 929–980.
11. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., et al. (2011). “Nanocelluloses: A new family of nature-based materials.” Angewandte Chemie International Edition, 50, 5438–5466.
12. Braun, B., Dorgan, J. R., & Chandler, J. P. (2008). “Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh− Gans− Debye regime.”  Biomacromolecules, 9(4), 1255-1263.
13. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J., Heux, L., Dubrueil, F., & Rochas, C. (2008). “The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose.” Biomacromolecules, 9, 57-65.
14. Dufresne, A. (2008). “Polysaccharide nanocrystal reinforced nanocomposites.” The Canadian Journal of Chemical Engineering, 86, 484–494.
15. Habibi, Y., Foulon, L., Aguié-Béghin, V., Molinari, M., & Douillard, R. (2007). “Langmuir–Blodgett films of cellulose nanocrystals: Preparation and characterization.” Journal of Colloid and Interface Science, 316(2), 388-397.
16. van den Berg, O., Capadona, J. R., & Weder, C. (2007). “Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents.”Biomacromolecules, 8(4), 1353-1357.
17. Wang, N., Ding, E., & Cheng, R. (2007). “Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups.”  Polymer, 48(12), 3486-3493.
18. Purkait, B. S., Ray, D., Sengupta, S., Kar, T., Mohanty, A., & Misra, M. (2010). “Isolation of cellulose nanoparticles from sesame husk.” Industrial & Engineering Chemistry Research, 50(2), 871-876.
19. Filson, P. B., & Dawson-Andoh, B. E. (2009). “Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials.” Bioresource Technology, 100(7), 2259-2264.
20. Kontturi, E., & Vuorinen, T. (2009). “Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying.” Cellulose, 16(1), 65-74.
21. Li, Q., & Renneckar, S. (2009). “Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures.” Cellulose, 16(6), 1025.
22. Turbak, A. F., Snyder, F. W., & Sandberg, K. R. (1983). “Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential.” In J. Appl. Polym. Sci.: Appl. Polym. Symp.; (United States) (Vol. 37, No. CONF-8205234-Vol. 2). ITT Rayonier Inc., Shelton, WA.
23. Seydibeyoğlu, M. Ö., & Oksman, K. (2008). “Novel nanocomposites based on polyurethane and micro fibrillated cellulose.” Composites Science and Technology, 68(3), 908-914.
24. Lee, S. Y., Chun, S. J., Kang, I. A., & Park, J. Y. (2009). “Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films.” Journal of Industrial and Engineering Chemistry, 15(1), 50-55.
25. Bendahou, A., Kaddami, H., & Dufresne, A. (2010). “Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites.” European Polymer Journal, 46(4), 609-620.
26. Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., ... & Lindström, T. (2007). “Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.” Biomacromolecules, 8(6), 1934-1941.
27. Jiang, L., Chen, X., & Li, Z. (2008). “Preparation of nano-crystalline cellulose from hydrolysis by cellulose.” Huaxue Yu Shengwu Gongcheng, 25(12), 63-66.
28. Filson, P. B., Dawson-Andoh, B. E., & Schwegler-Berry, D. (2009). “Enzymatic-mediated production of cellulose nanocrystals from recycled pulp.” Green Chemistry, 11(11), 1808-1814.
29. Satyamurthy, P., Jain, P., Balasubramanya, R. H., & Vigneshwaran, N. (2011). “Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis”. Carbohydrate Polymers, 83(1), 122-129.
30. Duran, N., Lemes, A. P., Duran, M., Freer, J., & Baeza, J. (2011). “A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production.” Journal of Chilean Chemical Society, 56, 672–677.
31. Cotana, F., & Giraldi, D. (2010). “Bio-methane form biogas purified and stored by hydrate technology.” Journal of Biotechnology, 150, S174.
32. Davis, G., & Song, J. H. (2006). “Biodegradable packaging based on raw materials from crops and their impact on waste management.” Industrial Crops and Products, 23, 147–161.
33. Lehn, J. M. (1995). “Supramolecular chemistry.”Concepts and perspectives. Weinheim: VCH.
34. Saxena, A., & Raguskas, A. J. (2009). “Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan.” Carbohydrate Polymers, 78, 357–360.
35. Saxena, A., Elder, T. J., Kenvin, J., & Ragauskas, A. J. (2010). “High oxygen nanocomposites barrier films based on xylan and nanocrystalline cellulose.” Nano-micro Letters, 2, 235–241.
36. Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., and Yue, C. 2012. “Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals.” Carbohydrate Polymers, 87: 2068-2075.
37. Rampazzo, R., Alkan, D., Gazzotti, S., Ortenzi, M. A., Piva, G., & Piergiovanni, L. (2017). “Cellulose Nanocrystals from lignocellulosic raw materials, for oxygen barrier coatings on food packaging films.” Packaging Technology and Science.
38. Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., ... & Kenny, J. M. (2012). “Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles.” Carbohydrate polymers, 87(2), 1596-1605.
39. Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. (2013). “Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.” Carbohydrate Polymers, 94(1), 154-169.
40. Cao, X., Chen, Y., Chang, P. R., Muir, A. D., & Falk, G. (2008). “Starch-based nanocomposites reinforced with flax cellulose nanocrystals.” eXPRESS Polymer Letters, 2, 502–510.