طراحی بسته‌بندی‌ فعال مواد غذایی حاوی سنسورهای هالوکرومیک به کمک نانوالیاف حاصل از روش الکتروهیدرودینامیک

نوع مقاله: ترویجی

نویسندگان

1 دانشجوی دکتری گروه مهندسی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

2 استاد گروه مهندسی مواد و طراحی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

چکیده

با پیشرفت دانش و فنّاوری، صنعت بسته‌بندی‌ مواد غذایی در حال تکامل است. فرآیند الکتروریسی روشی کاربردی، ساده و ارزان است و به عنوان یکی از بهترین روش‌های تولید الیاف (در محدوده نانومتر تا میکرومتر) کاربرد گسترده‌ای پیدا نموده است. اصول این فرآیند برپایه، اعمال میدان الکتریکی بالا بر یک محلول پلیمری، ایجاد جت الکترواستاتیکی و در نهایت شکل‌گیری الیاف روی صفحة جمع‌کننده استوار است. با توجّه به ویژگی‌هایی همچون تخلخل و سطح مخصوص بالا نانوالیاف الکتروریسی شده، می‌توان از پوشش‌های تولید شده با این روش، در صنایع بسته‌بندی مواد غذایی استفاده نمود. به کارگیری نانوالیاف در بسته‌بندی‌های مواد غذایی، به علت افزایش ویژگی‌های محافظتی بسته‌بندی، موجب افزایش طول عمر و حفظ کیفیت ماده غذایی درون بسته‌بندی می‌شود. همچنین با استفاده از روش الکتروریسی می‌توان حسگرهای حساس به pH را تولید و در بسته‌بندی مواد غذایی استفاده نمود که به مصرف‌کننده در ارزیابی سریع تازگی محصولات کمک خواهد کرد. با توجّه به اینکه امروزه فنّاوری تولید نانوالیاف از استقبال فراوانی برخوردار است، لذا در این مطالعه، به معرفی فرآیند الکتروریسی، عوامل مؤثر بر قطر نانوالیاف و کاربرد‌های استفاده از این نانوالیاف در بسته‌بندی مواد غذایی پرداخته می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Design of Active Food Packaging Containing Halochromic Sensors by Nanofibers Using Electrohydrodynamic Technique

نویسندگان [English]

  • Elham Alehosseini 1
  • Seid Mahdi Jafari 2
1 Ph.D. Candidate, Department of Food Materials and Process Design, Gorgan University of Agricultural Sciences and Natural Resources
2 Professor, Department of Food Materials and Process Design, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Food packaging industry is evolved using the development of knowledge and technology. The electrospinning process is a simple, low-cost and applied method that has recently been widely used as one of the best methods of fiber production (in the nanometer to micrometer range). The principles of this process are based on applying a high electric field to a polymer solution, creating an electrostatic jet, and eventually forming fibers on the collecting plate. Due to characterizations such as high porosity and surface area (specific surface) of electrospun nanofibers, coatings produced by this method can be used in food packaging industries. The use of nanofibers in food packaging,  due to the increased protective properties of the packaging, increases the shelf life and preserves the quality of the food in the packaging. Electrospinning process can also be used to produce pH-sensitive sensors, incorporated food packaging, which will help the consumer to quickly assess the products freshly. Since nanofibers production technology is very popular nowadays, in this study, we have introduced the electrospinning process, factors affecting the diameter of nanofibers, and nanofiber applications in food packaging.

کلیدواژه‌ها [English]

  • Electrospinning
  • Food Active Packaging
  • Nanofibers
  • Nano Sensor
1.  Ghorani, B., & Tucker, N. (2015). "Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology." Food Hydrocolloids, 51, 227.

2.  Alehosseini, A., Ghorani, B., Sarabi-Jamab, M., & Tucker, N. (2017). "Principles of electrospraying: A new approach in protection of bioactive compounds in foods." Critical Reviews in Food Science and Nutrition, 1.

3.  Ghorani, B., Russell, S. J., & Goswami, P. (2013). "Controlled morphology and mechanical characterisation of electrospun cellulose acetate fibre webs." International Journal of Polymer Science, 2013.

4.  Ramakrishna, S. (2005). "An introduction to electrospinning and nanofibers." World Scientific.

5.  Fang, J., Niu, H., Lin, T., & Wang, X. (2008). "Applications of electrospun nanofibers." Chinese science bulletin, 53(15), 2265.

6.  Fang, J., Wang, X., & Lin, T. (2011). "Functional applications of electrospun nanofibers." InTech–Open Access Publisher.

7.  Andrady, A. L. (2008). "Science and technology of polymer nanofibers." John Wiley & Sons.

8.  Han, W., Yu, Y., Li, N., & Wang, L. (2011). "Application and safety assessment for nano-composite materials in food packaging." Chinese science bulletin, 56(12), 1216.

9.  Farhang, B. (2009). "Nanotechnology and applications in food safety." In  Global issues in food science and technology,  (pp. 401): Elsevier.

10. Liao, F., Chen, C., & Subramanian, V. (2005). "Organic tfts as gas sensors for electronic nose applications." Sensors and Actuators B: Chemical, 107(2), 849.

11. Greiner, A., & Wendorff, J. H. (2007). "Electrospinning: A fascinating method for the preparation of ultrathin fibers." Angewandte Chemie International Edition, 46(30), 5670.

12. Tassanawat, S., Phandee, A., Magaraphan, R., Nithitanakul, M., & Manuspiya, H., (2007). "Ph-sensitive pp/clay nanocomposites for beverage smart packaging." In  Nano/Micro Engineered and Molecular Systems, 2007. NEMS'07. 2nd IEEE International Conference on,  (pp. 478): IEEE.

13. Formhals, A. (1934). "Us patent 1975504." US Pat, 1975504.

14. Frenot, A., & Chronakis, I. S. (2003). "Polymer nanofibers assembled by electrospinning." Current opinion in colloid & interface science, 8(1), 64.

15. Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning." Journal of Applied physics, 87(9), 4531.

16. Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). "Bending instability in electrospinning of nanofibers." Journal of Applied physics, 89(5), 3018.

17. Ghorani, B., Alehosseini, A., & Tucker, N. (2017). "8 - nanocapsule formation by electrospinning." In S. M. Jafari (Ed.), Nanoencapsulation technologies for the food and nutraceutical industries,  (pp. 264): Academic Press.

18. Tan, S., Inai, R., Kotaki, M., & Ramakrishna, S. (2005). "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process." Polymer, 46(16), 6128.

19. Shenoy, S. L., Bates, W. D., Frisch, H. L., & Wnek, G. E. (2005). "Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer–polymer interaction limit." Polymer, 46(10), 3372.

20. Gupta, P., Elkins, C., Long, T. E., & Wilkes, G. L. (2005). "Electrospinning of linear homopolymers of poly (methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent." Polymer, 46(13), 4799.

21. Lin, Y., Yao, Y., Yang, X., Wei, N., Li, X., Gong, P., Li, R., & Wu, D. (2008). "Preparation of poly (ether sulfone) nanofibers by gas‐jet/electrospinning." Journal of Applied Polymer Science, 107(2), 909.

22. Mo, X., Xu, C., Kotaki, M., & Ramakrishna, S. (2004). "Electrospun p (lla-cl) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation." Biomaterials, 25(10), 1883.

23. Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B. (2002). "Structure and process relationship of electrospun bioabsorbable nanofiber membranes." Polymer, 43(16), 4403.

24. De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). "The effect of temperature and humidity on electrospinning." Journal of materials science, 44(5), 1357.

25. Han, J. H. (2014). "A review of food packaging technologies and innovations." In  Innovations in food packaging (second edition),  (pp. 3): Elsevier.

26. Neo, Y. P., Ray, S., & Perera, C. O. (2018). "Chapter 4 - fabrication of functional electrospun nanostructures for food applications." In A. M. Grumezescu & A. M. Holban (Eds.), Role of materials science in food bioengineering,  (pp. 109): Academic Press.

27. Zhou, B., Jin, X., Li, J., Xu, W., Liu, S., Li, Y., & Li, B. (2014). "Vacuum-assisted layer-by-layer electrospun membranes: Antibacterial and antioxidative applications." RSC Advances, 4(97), 54517.

28. Sun, K., & Li, Z. (2011). "Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning." Express Polymer Letters, 5(4).

29. Torres‐Giner, S., Pérez‐Masiá, R., & Lagaron, J. M. (2016). "A review on electrospun polymer nanostructures as advanced bioactive platforms." Polymer Engineering & Science, 56(5), 500.

30. Corradini, E., Souto de Medeiros, E., Carvalho, A. J., Curvelo, A. A., & Mattoso, L. H. (2006). "Mechanical and morphological characterization of starch/zein blends plasticized with glycerol." Journal of Applied Polymer Science, 101(6), 4133.

31. Shukla, R., & Cheryan, M. (2001). "Zein: The industrial protein from corn." Industrial crops and products, 13(3), 171.

32. Lagaron, J., Gimenez, E., Sanchez-Garcia, M., Ocio, M., & Fendler, A., (2006). "Second generation nanocomposites: A must in passive and active packaging and biopackaging applications." In  The 15th IAPRI World Conference in Packaging,  (pp. 1766).

33. Yao, C., Li, X., & Song, T. (2007). "Electrospinning and crosslinking of zein nanofiber mats." Journal of Applied Polymer Science, 103(1), 380.

34. Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). "Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system." Food chemistry, 136(2), 1013.

35. Naghavi, E. A. (2015). "Nanocellulose-based composite films in food packaging." Scientific quarterly journal of packaging science and technology, 22. (In Persian)

36. Pittarate, C., Yoovidhya, T., Srichumpuang, W., Intasanta, N., & Wongsasulak, S. (2011). "Effects of poly (ethylene oxide) and zno nanoparticles on the morphology, tensile and thermal properties of cellulose acetate nanocomposite fibrous film." Polymer journal, 43(12), 978.

37. Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). "Natural-based plasticizers and biopolymer films: A review." European polymer journal, 47(3), 254.

38. Tsutsumi, H., & Hara, C., (2008). "Characterization of new type polymer composites prepared by in situ coffining electrospun fibers into polymer matrixes." In  Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology, vol. 2 (pp. 733).

39. Kayaci, F., & Uyar, T. (2012). "Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (pva) nanowebs: Prolonged shelf-life and high temperature stability of vanillin." Food chemistry, 133(3), 641.

40. Wang, S., Marcone, M. F., Barbut, S., & Lim, L.-T. (2013). "Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (rubus strigosus) extracts." Food Research International, 52(2), 467.

41. Mascheroni, E., Fuenmayor, C. A., Cosio, M. S., Di Silvestro, G., Piergiovanni, L., Mannino, S., & Schiraldi, A. (2013). "Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release." Carbohydrate polymers, 98(1), 17.

42. Vahed, S., Zamani, m., Asadi, Z., & Amohidari, M., (2011). "Investigation of antibacterial properties of nanofibers produced by electrospinning process in food packaging." In  The first national food safety seminar. (In Persian)

43. Díez-Pascual, A. M., & Díez-Vicente, A. L. (2015). "Antimicrobial and sustainable food packaging based on poly (butylene adipate-co-terephthalate) and electrospun chitosan nanofibers." RSC Advances, 5(113), 93095.

44. Amna, T., Yang, J., Ryu, K.-S., & Hwang, I. (2015). "Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products." Journal of food science and technology, 52(7), 4600.

45. Wen, P., Zhu, D.-H., Feng, K., Liu, F.-J., Lou, W.-Y., Li, N., Zong, M.-H., & Wu, H. (2016). "Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging." Food chemistry, 196, 996.

46. Kara, H. H., Xiao, F., Sarker, M., Jin, T. Z., Sousa, A. M., Liu, C. K., Tomasula, P. M., & Liu, L. (2016). "Antibacterial poly (lactic acid)(pla) films grafted with electrospun pla/allyl isothiocyanate fibers for food packaging." Journal of Applied Polymer Science, 133(2).

47. Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2013). "High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein." Food Hydrocolloids, 32(1), 106.

48. De Azeredo, H. M. (2009). "Nanocomposites for food packaging applications." Food Research International, 42(9), 1240.

49. Agarwal, A., Raheja, A., Natarajan, T., & Chandra, T. (2014). "Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread." Innovative Food Science & Emerging Technologies, 26, 424.

50. Van der Schueren, L., Mollet, T., Ceylan, Ö., & De Clerck, K. (2010). "The development of polyamide 6.6 nanofibres with a ph-sensitive function by electrospinning." European polymer journal, 46(12), 2229.

51. Agarwal, A., Raheja, A., Natarajan, T., & Chandra, T. (2012). "Development of universal ph sensing electrospun nanofibers." Sensors and Actuators B: Chemical, 161(1), 1097.

52. Van der Schueren, L., De Meyer, T., Steyaert, I., Ceylan, Ö., Hemelsoet, K., Van Speybroeck, V., & De Clerck, K. (2013). "Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the ph-sensitive dye nitrazine yellow." Carbohydrate polymers, 91(1), 284.

53. Devarayan, K., & Kim, B.-S. (2015). "Reversible and universal ph sensing cellulose nanofibers for health monitor." Sensors and Actuators B: Chemical, 209, 281.

54. Eslah, S., Nouri, M., (2016). " A review on applications of electrospun nanofibers in food packaging",Journal of Packaging Sciences and Skills Scientific. Vol. 6, No. 24. Winter 2016. 48-60.