مروری بر سنتز، ویژگی ها و کاربرد نانوامولسیون ها در بسته‌بندی مواد غذایی فعال زیستی

نویسندگان

1 کارشناس مسئول، گروه پژوهشی مواد غذایی و حلال کشاورزی، پژوهشکده صنایع غذایی و فرآورده های کشاورزی، پژوهشگاه استاندارد، کرج، ایران

2 دانشیار، عضو هیأت علمی، گروه علوم و صنایع غذایی، دانشکده مهندسی کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

بسته ­بندی ­های نوین، تنها مسئول دربرگرفتن و محافظت مواد غذایی در برابر عوامل خارجی نیستند، بلکه مزایای دیگری نیز دارند که شامل افزایش زمان انبارمانی، جلوگیری از فساد و افت مواد مغذی و تعیین زمان ماندگاری مواد غذایی می­باشد. افزایش تقاضا برای غذاهایی با ویژگی­ های تازه­ماندن، کاهش افزودنی ­های مصنوعی و نگه­دارنده‌ها، تخریب اندک محیط زیست و ایمن ­بودن، محققان و صنایع را به سمت توسعه فنّاوری ­های فرآوری ملایم ­تر و راهکارهای بسته‌بندی سازگارتر با محیط­زیست سوق داده است. در این زمینه، استفاده از نانوامولسیون­ها برای بهبود عملکرد بسته‌بندی مواد غذایی سازگار باتوسعه پایدار و کارکردهای جدید در پوشش ­ها و فیلم ­های متداول ارائه کرده است. نانوامولسیون­ ها که دارای پایداری نوری و ویژگی­ های رئولوژیکی منحصر به فردی ازجمله: حفاظت، ریزپوشانی و تحویل ترکیبات زیست فعال و عملگرا (از جمله مواد نگه­دارنده طبیعی مانند: اسانس­های روغنی گیاهان، مواد مغذّی، ویتامین­ها، رنگ­ ها و طعم‌دهنده‌ها)، سورفاکتانت ­ها(از جمله پروتئین ­ها و کربوهیدرات­هایی که در طبیعت یافت می‌شوند)، برای طراحی نانوامولسیون ­های با درجه غذایی مورد نظر برای کاربردهای بسته‌بندی استفاده می­شوند.دراین مقاله ازنانوامولسیون ­ها در ماتریکس ­های بیوپلیمری مورداستفاده در بسته‌بندی مواد غذایی با وجود فعالیت ضدمیکروبی بالقوه آن­ها در برابر پاتوژن­های همراه غذا، مورد بررسی قرار می‌گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of the Synthesis, Properties and Application of Nanoemulsions in the Packaging of Bioactive Foods

نویسندگان [English]

  • Nadia Ahmadi 1
  • Hamed Ahari 2
1 PhD student,Standard Research Institute,Faculty of Food & Agriculture ,Expert on Fruits & Vegetables Karaj-Iran
2 Associate Professor, Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

New packaging is not only responsible for including and protecting food from external factors, but also has other benefits that include increased storage time, prevent spoilage and nutrient loss, and determine the shelf life of food. Increased demand for foods with fresh properties, reduced synthetic additives and preservatives, low environmental degradation and safety, have led researchers and industries to develop milder processing technologies and more eco-friendly packaging solutions. In this regard, the use of nano-emulsions to improve food packaging performance is compatible with sustainable development and new functions in conventional coatings and films. Nano-emulsions that have unique optical stability and rheological properties, including: protection, encapsulating and delivery of hydrophobic bioactive and functional compounds (including natural preservatives such as: plant essential oils, nutraceuticals, vitamins, colors, and flavors, surfactants (including naturallyoccurringproteins and carbohydrates), are used to design nano-emulsions with the desired food grade for packaging applications. In this paper, nano-emulsions in biopolymer matrices used in food packaging are investigated as well as their potential antimicrobial activity against foodborne pathogens.

کلیدواژه‌ها [English]

  • Food packaging
  • Microcoating
  • antimicrobial activity
  • Nanoemulsion
1. Dobrucka, R & Cierpiszewski, R. “Active and Intelligent Packaging Food – Research and Development.” Food Technol. 61 (2014) 875.
2. Prasad,P & Kochhar,A. “Active Packaging in Food Industry.” IOSR-JESTFT. 08 (1997) 01-07.
3. Artiga-Artigas, M., Acevedo-Fani, A., & Mart´ın-Belloso, O. (2017). “Effect ofsodium alginate incorporation procedure on the physicochemical propertiesof nanoemulsions.” Food Hydrocolloids, 70, 191–200.
4. Sugumar, S., Mukherjee, A., & Chandrasekaran, N. (2015). “Eucalyptus oilnanoemulsion-impregnated chitosan film: Antibacterial effects against aclinical pathogen, Staphylococcus aureus, in vitro.” International Journal ofNanomedicine, 10(1), 67–75.
5. Gahruie, H., Ziaee, E., Eskandari, M. H., & Hosseini, S. M. H. (2017). “Characterization of basil seed gum-based edible films incorporated withZataria multiflora essential oil nanoemulsion.” Carbohydrate Polymers, 166, 93–103.
6. Kowalczyk, D., & Baraniak, B. (2014). “Effect of candelilla wax on functionalproperties of biopolymer emulsion films – a comparative study.” FoodHydrocolloids, 41, 195–209.
7. Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Gra¨u, M. A., & Mart´ın-Belloso, O. (2015). “Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties.” Food Hydrocolloids, 47, 168–177.
8. Alexandre, E. M. C., Lourenc¸o, R. V., Bittante, A. M. Q. B., Moraes, I. C.F., & Sobral, P. J. A. (2016). “Gelatin-based films reinforced withmontmorillonite and activated with nanoemulsion of ginger essential oil forfood packaging applications.” Food Packaging and Shelf Life, 10, 87–96.
9. Otoni, C. G., Avena-Bustillos, R. J., Olsen, C. W., Bilbao-S´ainz, C., & McHugh, T. H. (2016). “Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions.” Food Hydrocolloids, 57, 72–79
10. Otoni, C. G., Moura, M. R., Aouada, F. A., Camilloto, G. P., Cruz, R. S.,Lorevice, M. V., Mattoso, L. H. C. (2014). “Antimicrobial andphysical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films.” Food Hydrocolloids, 41, 188–194.
11. Pereira-da-Silva, M. A., & Ferri, F. A. (2017). “Scanning electron microscopy.” In A. L. Da R´oz, M. Ferreira, F. L. Leite, & O. N. Oliveira Jr. (Eds.), Nanocharacterization techniques (pp. pp. 1–35). Norwich, CT: WilliamAndrew Publishing.
12. Bilbao-S´ainz, C., Avena-Bustillos, R. J., Wood, D. F., Williams, T. G., & McHugh, T. H. (2010). “Nanoemulsions prepared by a low-energyemulsification method applied to edible films.” Journal of Agricultural and FoodChemistry, 58(22), 11932–11938.
13. Imran, M., Revol-Junelles, A.-M., Ren´e, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E. Desobry, S. (2012). “Microstructure andphysico-chemical evaluation of nano-emulsion-based antimicrobial peptidesembedded in bioactive packaging films.” Food Hydrocolloids, 29(2), 407–419.
14. Atar´es, L., & Chiralt, A. (2016). “Essential oils as additives in biodegradablefilms and coatings for active food packaging.” Trends in Food Science &Technology, 48, 51–62.
15. Tararam, R., Garcia, P. S., Deda, D. K., Varela, J. A., & de Lima Leite, F. (2017). “Atomic force microscopy: A powerful tool for electricalcharacterization.” In A. L. Da R´oz, M. Ferreira, F. L. Leite, & O. N. OliveiraJr. (Eds.), Nanocharacterization techniques (pp. 37–64). Norwich, CT: WilliamAndrew Publishing.
16. Alessio, P., Aoki, P. H. B., Furini, L. N., Aliaga, A. E., & LeopoldoConstantino, C. J. (2017). “Spectroscopic techniques for characterization ofnanomaterials.” In A. L. Da R´oz, M. Ferreira, F. L. Leite, & O. N. Oliveira Jr. (Eds.), Nanocharacterization techniques (pp. 65–98). Norwich, CT: WilliamAndrew Publishing.
17. Manrich, A., Moreira, F. K. V., Otoni, C. G., Lorevice, M. V., Martins, M.A., & Mattoso, L. H. C. (2017). “Hydrophobic edible films made up oftomato cutin and pectin.” Carbohydrate Polymers, 164, 83–91.
18. Galus, S., & Kadzi´nska, J. (2015). “Food applications of emulsion-based ediblefilms and coatings.” Trends in Food Science & Technology, 45(2), 273–283.
19. Quezada Gallo, J.-A., Debeaufort, F., Callegarin, F., & Voilley, A. (2000). “Lipid hydrophobicity, physical state and distribution effects on the properties of emulsion-based edible films.” Journal of Membrane Science, 180(1), 37–46.
20. P´erez-C´ordoba, L. J., Norton, I. T., Batchelor, H. K., Gkatzionis, K., Spyropoulos, F., & Sobral, P. J. A. (2017). “Physico-chemical, antimicrobialand antioxidant properties of gelatin-chitosan based films loaded withnanoemulsions encapsulating active compounds.” Food Hydrocolloids, 79,554–559.
21. Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C.E., & Friedman, M. (2008). “Storage stability and antibacterial activityagainst Escherichia coli O157:H7 of carvacrol in edible apple films made bytwo different casting methods.” Journal of Agricultural and Food Chemistry,56(9), 3082–3088.
22. Otoni, C. G., Pontes, S. F. O., Medeiros, E. A. A., & Soares, N. F. F. (2014). “Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelflife extenders for sliced bread.” Journal of Agricultural and Food Chemistry, 62(22), 5214–5219.
23. Rojas-Gra¨u, M. A., Avena-Bustillos, R. J., Friedman, M., Henika, P. R., Mart´ın-Belloso, O., & McHugh, T. H. (2006). “Mechanical, barrier,” Vol.18, 2019.
24. Ma, X., Chang, P. R., & Yu, J. (2008). “Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites.” Carbohydrate Polymers, 72(3), 369–375.
25. Hernandez, R. J. (1994). “Effect of water vapor on the transport properties of oxygen through polyamide packaging materials.” Journal of Food Engineering, 22(1), 495–507.
26. Perdones, A, Vargas, M., Atare´s, L., & Chiralt, A. (2014). “Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil filmsas affected by oleic acid.” Food Hydrocolloids, 36, 256–264.
27. Chen, H., Hu, X., Chen, E., Wu, S., McClements, D. J., Liu, S. Li, Y. (2016). “Preparation, characterization, and properties of chitosan films withcinnamaldehyde nanoemulsions.” Food Hydrocolloids, 61, 662–671.
28. Espitia, P. J. P., & Batista, R. A. (2015). “Non-thermal food preservation: Control of food-borne pathogens through active food packaging and nanotechnology.” In R. V. Ravishankar (Ed.), Advances in food biotechnology (pp. 499–510).
29. Severino, R., Vu, K. D., Dons`ı, F., Salmieri, S., Ferrari, G., & Lacroix, M. (2014). “Antibacterial and physical effects of modified chitosan based-coatingcontaining nanoemulsion of mandarin essential oil and three non-thermaltreatments against Listeria innocua in green beans.” International Journal of FoodMicrobiology, 191, 82–88.
30. Shadman, S., Hosseini, S. E., Langroudi, H. E., & Shabani, S. (2017). “Evaluation of the effect of a sunflower oil-based nanoemulsionwith Zataria multiflora Boiss. essential oil on the physicochemical propertiesof rainbow trout (Oncorhynchus mykiss) fillets during cold storage.” LWT -Food Science and Technology, 79, 511–517.
31. Ozogul, Y., Yuvka, ˙I., Ucar, Y., Durmus, M., Ko¨ sker, A. R., O¨ z, M., &Ozogul, F. (2017). “Evaluation of effects of nanoemulsion based on herbessential oils (rosemary, laurel, thyme and sage) on sensory, chemical andmicrobiological quality of rainbow trout (Oncorhynchus mykiss) fillets duringice storage.” LWT - Food Science and Technology, 75, 677–684.
32. Robledo, N., Vera, P., L´opez, L., Yazdani-Pedram, M., Tapia, C., & Abugoch, L. (2018). “Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes.” Food Chemistry, 246, 211–219.
33. Salvia-Trujillo, L., Rojas-Gra¨u, M. A., Soliva-Fortuny, R., & Mart´ın-Belloso, O. (2014). “Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions.” Food Control, 37, 292–297.
34. Topuz, O. K., ¨Ozvural, E. B., Zhao, Q., Huang, Q., Chikindas, M., & G¨ ol¨ukc ¸¨ u, M. (2016). “Physical and antimicrobial properties of anise oiloaded nanoemulsions on the survival of foodborne pathogens.” Food Chemistry, 203, 117–123.
35. Otoni, C. G., Pontes, S. F. O., Medeiros, E. A. A., & Soares, N. F. F. (2014). “Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelflife extenders for sliced bread.” Journal of Agricultural and Food Chemistry, 62(22), 5214–5219.
36. Salvia-Trujillo, L., Rojas-Gra¨u, M. A., Soliva-Fortuny, R., &Mart´ın-Belloso, O. (2015). “Use of antimicrobial nanoemulsions as ediblecoatings: Impact on safety and quality attributes of fresh-cut fuji apples.” Postharvest Biology and Technology, 105, 8–16.