مروری بر ویژگی‌های نانوذرّات دارای خاصیت ضدمیکروبی و کاربرد آن ها در بسته بندی‌ فعال مواد غذایی

نوع مقاله : ترویجی

نویسندگان

گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه

چکیده

در طی سال‌های اخیر، تمایل به گسترش و توسعه بسته­بندی‌های نوین در صنایع غذایی بسیار مورد توجّه قرار گرفته است. یکی از مهم­ترین انواع بسته­بندی‌های نوین غذایی، بسته‌بندی‌های فعال حاوی ترکیبات نگهدارندة مختلف می‌باشند. مواد ضدمیکروبی از جمله مهم­ترین انواع ترکیبات فعال هستند که در طراحی بسته­بندی فعال مورد استفاده قرار می‌گیرند. انواع مختلف ترکیبات ضدمیکروبی برای این منظور مورد استفاده قرار گرفته‌اند و نانوذرّات دارای خاصیت ضدمیکروبی یک دستة مهم از آن­ها محسوب می‌شوند. این نانوذرّات در ترکیب فیلم بسته‌بندی و یا به عنوان پوشش در سطح داخلی آن مورد استفاده قرار می‌گیرند و بدون مهاجرت به داخل مادۀ غذایی، اثر میکروب­کشی را در سطح محصول نشان می‌دهند. نانوذرّات فلزی مانند نانونقره و اکسیدهای فلزی(دی اکسید تیتانیوم، اکسید روی و اکسید مس) و همچنین برخی از نانوذرّات آلی (نانوذرّات کیتوزان) خاصیت ضدمیکروبی قابل توجّهی از خود نشان می‌دهند و در طی سال‌های اخیر، استفاده از آن­ها در تولید بسته‌بندی فعال برای افزایش ماندگاری محصولات غذایی مختلف گسترش یافته است. در این مقالة مروری، به انواع نانومواد دارای خاصیت ضدمیکروبی که می‌توانند در تولید بسته‌بندی‌های فعال استفاده شوند اشاره شده است. ویژگی‌ها و خصوصیات شیمیایی این نانومواد، مکانیسم اثر ضدمیکروبی آن­ها و همچنین مثال‌هایی از کاربرد آن­ها در بسته‌بندی مواد غذایی، به تفصیل مورد بحث قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Antimicrobial Properties of Nanoparticles and Their Application in Active Food Packaging: A Review

نویسندگان [English]

  • Hadi Almasi
  • Saeedeh Azizi
Department of Food Science, Faculty of agriculture, Urmia university
چکیده [English]

During recent years, the tendency to expand and development of novel packaging systems in the food industry has been widely considered. One of the most important types of modern food packaging systems is active packaging containing various preservatives. Antimicrobial agents are one of the most important active compounds used in active packaging design. Different types of antimicrobial compounds have been used for this purpose and nanoparticles with antimicrobial properties are are an important example of them. These nanoparticles are used in the film matrix or as a coating on internal surface of packaging film and show antimicrobial effect on the surface of foodstuff without migrating into the food material. Metal nanoparticles (nano-silver) and metal oxides (titanium dioxide, zinc oxide and copper oxide) as well as some organic nanoparticles (chitosan nanoparticles) have shown significant antimicrobial activity and have been used in recent years in production. Active packaging has been expanded to increase the shelf life of various food products. In this review article, antimicrobial types of nanomaterials that can be used in the production of active packaging are mentioned. The chemical properties and properties of these nanomaterials, their antimicrobial effect mechanisms, and examples of their application in food packaging are discussed in detail.

کلیدواژه‌ها [English]

  • Active Packaging؛ Antimicrobial Nanoparticles؛ Chemical Structure
  • Mechanism of Action
  • Shelf-life Extension
1. قنبرزاده، ب.، الماسی، ه.، و زاهدی، ی.، (1388). «بیوپلیمرهای زیست تخریب­پذیر و خوراکی در بسته­بندی مواد غذایی و دارویی». انتشارات دانشگاه امیرکبیر. چاپ اول.
2. قنبرزاده، ب.، و الماسی، ه.، (1390). «فیلم‌های خوراکی فعال در بسته­بندی مواد غذایی». فصلنامه علوم و صنایع غذایی ایران، 31 (8)، 135-123.
3. Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51.
4.Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284.
5.Damm, C., Münstedt, H., & Rösch, A. (2008). The antimicrobial efficacy of polyamide 6/silver-nano-and microcomposites. Materials Chemistry and Physics, 108(1), 61-66.
6.McShan, D., Ray, P. C., & Yu, H. (2014). Molecular toxicity mechanism of nanosilver. Journal of food and drug analysis, 22(1), 116-127
7.EFSA. (2005). Opinion of the Scientific Panel on food additives, flavourings, process-ing aids and materials in contact with food (AFC) on a request from the Commis-sion related to a 7th list of substances for food contact materials. Food and Beverage Packaging Technology, 201.
8.Ghanbarzadeh, B., Oleyaei, S. A., & Almasi, H. (2015). Nanostructured materials utilized in biopolymer-based plastics for food packaging applications. Critical reviews in food science and nutrition, 55(12), 1699-1723.
9.Brayner, R., Ferrari-Llion, R., Djediat, S., Fievet, F., (2006). “Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium.” Nano Letters, 6, 866-870.
10.Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS microbiology letters, 279(1), 71-76.
11.Nassar, M. A., & Youssef, A. M. (2012). Mechanical and antibacterial propertiesof recycled carton paper coated by PS/Ag nanocomposites for packaging. Carbohydrate Polymers, 89(1), 269-274.
12.DeMoura, M.R., Lorevice, M.V., Mattoso, L.H.C. &Zucolotto, V. (2011). “Highly stable, edible cellulose films incorporating chitosan and silver nanoparticles.” Journal of Food Science, 76, N25-N29.
13.Mohammed Fayaz, A., Balaji, K., Girilal, M., Kalaichelvan, P., & Venkatesan, R. (2009). Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Journal of agricultural and food chemistry, 57(14), 6246-6252.
14.Lloret, E., Picouet, P., & Fernández, A. (2012). Matrix effects on the antimicrobial capacity of silver based nanocomposite absorbing materials. LWT-Food Science and Technology, 49(2), 333-338.
15.Zhou, L., Lv, S., He, G., He, Q., & Shi, B. (2011). Effect of pe/ag2o nanopackaging on the quality of apple slices. Journal of Food Quality, 34(3), 171-176.
16.Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., & Toniolo, R. (2013). Effect of TiO 2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiologicalstability of a short-ripened cheese. Food chemistry, 138(2), 1633-1640.
17.Bodaghi, H., Mostofi, Y., Oromiehie, A., Zamani, Z., Ghanbarzadeh, B., Costa, C., Conte, A., & Del Nobile, M. A. (2013). Evaluation of the photocatalytic antimicrobial effects of a TiO 2 nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Science and Technology, 50(2), 702-706.
18.Oleyaei, S. A., Almasi, H., Ghanbarzadeh, B., &Moayedi, A. A. (2016). Synergistic reinforcing effect of TiO 2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers, 152, 253-262.
19.Li, L.-H., Deng, J.-C., Deng, H.-R., Liu, Z.-L., & Li, X.-L. (2010). Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical Engineering Journal, 160(1), 378-382.
20.Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11(4), 742-748.
21.Jebel, F. S., & Almasi, H. (2016). Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers, 149, 8-19.
22.Bogdanović, U., Lazić, V., Vodnik, V., Budimir, M., Marković, Z. &Dimitrijević, S. (2014). “Copper nanoparticles with high antimicrobial activity.” Materials Letters, 128, 75-78.
23.Ren, G., Hu, D., Cheng, E.V.C., Vargas-Reus, M.A., Reip, P. &Allaker, R.P. (2009). “Characterization of copper oxide nanoparticles for antimicrobial applications.” International Journal of Antimicrobial Agents, 33, 587-590.
24.Yoosefi Booshehri, A., Wang, R., & Xu, R. (2015). Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chemical Engineering Journal, 262, 999-1008.
25.Almasi, H., Jafarzadeh, P., & Mehryar, L., (2018). Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohydrate Polymers, 186, 273–281.
26.Ghanbarzadeh, B., and Almasi, H., (2013). Boidegradable polymers, In: Biodegradation- life of science, Rolando Chamy & Francisca Rosenkranz (Editors), InTech Publications, Croatia, pp: 141-186.
27.Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: preparations, modifications, and applications.” Nanoscale, 4(11), 3308-3318.
28.Antoniou, J., Liu, F., Majeed, H., & Zhong, F. (2015). Characterization of tara gum edible filmsincorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Food Hydrocolloids, 44, 309-319.
29.Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishehkar, H. (2017). Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International journal of biological macromolecules, 97, 373-381.
30.Jafari, H., Pirouzifard, M., Khaledabad, M. A., & Almasi, H. (2016). Effect of chitin nanofiber on the morphological and physical properties of chitosan/silver nanoparticle bionanocomposite films. International journal of biological macromolecules, 92, 461-466.
31.Lorevice, M. V., Otoni, C. G., de Moura, M. R., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high-and low-methyl pectin films.Food Hydrocolloids, 52, 732-740.
32.Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172-182.